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Traveling density wave models for earthquakes and driven threshold systems
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Driven threshold systems are now used to model sandpiles, earthquakes, magnetic depinning transitions,
integrate-and-fire neural networks, and driven foams. We analyze a physically motivated model which has
many of the same properties as the hard threshold models, but in which all of the nonequilibrium physics is
obtained from a Lyapunov functional. The ideas apply to mean-field systems, and lead to a number of
predictions, including scaling exponents and metastable lifetimes for nucleating droplets. The former predic-
tions are supported, for example, by data observed for earthquake fault systems. An interesting consequence of
the model is that time appears as a scaling field, leading to temporal scaling laws similar to those observed in
nature.@S1063-651X~97!09307-0#
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I. INTRODUCTION

A variety of nonlinear, driven systems have dynamics t
have been modeled with thresholds. Common to these m
els is a repetitive process in which the force or potential a
lattice site is persistently increased by the externally supp
force, until a sharp threshold is reached when a sudden j
to a new state occurs. During the jump, the force is gre
reduced, after which the process begins again. Dependin
the degree to which each site is coupled to its neighb
other sites will be induced to jump at the same time. Pr
ably the two most widely known examples are the sand
model @1# of self-organized criticality, and the Burridge
Knopoff ~BK! slider block model@2# for earthquakes. In the
former, a lattice accumulates particles, or is tilted, unti
critical slope ~threshold! is reached at which avalanche
~clusters of failed sites! begin to occur. In the simplest ver
sions of these models, avalanches of all sizes occur, lea
to a family of critical exponents, the mean-field values
which @3# have been shown to be identical to those for me
field percolation~the same as spinodal exponents!. Similarly,
in the slider block models@2,4#, a loader plate increases th
stress on a network of coupled sliding blocks until the sta
friction threshold is reached. At that point, one or more
the blocks begin to slide, still subject to a dynamical fricti
stress. Avalanches~clusters! of failing blocks of all sizes
occur, again leading to another family of critical exponen

The basic picture of a persistently driven dynamical s
tem displaying threshold dynamics is evidently a comm
model for a variety of physical systems@2,5–7#, including
magnetic depinning transitions@6# and slowly driven foams
@7#. Yet a basic question remains as to whether these sys
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are best described as residing near a critical point in the s
space of the system, or as systems that occasionally dis
nucleation events. The latter are avalanches involving
entire system that occur significantly more frequently th
would be expected on the basis of the observed frequenc
small events. Data from laboratory@8# and field observations
@9,10# apparently indicates that both real sandpiles and ea
quake faults often display phenomena associated with nu
ation events, in which the entire sandpile or fault fails fo
lowing a series of smaller events.

In this work, we present the ‘‘traveling density wave
~TDW! model@11# that may be useful for understanding th
physical processes of driven nonlinear threshold syste
The TDW Lyapunov functional is similar to the densi
wave Hamiltonian@12,13# used to describe charge and sp
density waves. In this model, the system is persisten
driven to failure by means of external forces, and the sud
jump of a site to a new state is a nucleation event. Moreo
since the nucleation occurs near the mean-field spino
which behaves as a line of critical points, a scaling regime
observed that has the ‘‘magnetic’’ spinodal scaling exp
nents. The scaling fields for the TDW model are~1! time and
~2! a parameterL involving the wavelength and amplitude o
the cohesive forces across the sliding surface, and the el
constants of the surrounding elastic medium. For exam
nucleation events~‘‘earthquakes’’! as well as ordinary criti-
cal phenomena~‘‘fault creep’’! are predicted, and have bee
seen in the simulations discussed below. ‘‘Aftershock’’ a
‘‘foreshock’’ events are predicted, as well as an Omori la
@9# for both aftershocks and foreshocks that has a temp
scaling exponentp51, the value most often observed
nature,pobs'1.
293 © 1997 The American Physical Society
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294 56RUNDLE, KLEIN, GROSS, AND FERGUSON
To motivate the foundations of the traveling density wa
model, which may have general applications to a wide v
ety of other systems, we return to the prototypical thresh
system of an earthquake fault driven by tectonic plate m
tion. We discuss the manner in which the TDW model ari
in this context, followed by an investigation of its propertie

II. MODELS FOR EARTHQUAKES
AND FRICTIONAL SLIDING

A central problem in understanding earthquakes lies
clarifying the physics of the frictional sliding processes@14#.
Current modeling approaches@2,4,15–19# rely on friction
laws that are of either the cellular automaton~CA! jump-rule
type; the simple BK model with inverse velocity depe
dence; or the experimentally determined, Dieterich-Ru
~DR! parametrized state-variable model. While the latter
based on the idea that two surfaces under shearing stres
never actually stationary, recent experimental data@20,21#
raise new questions about the validity and applicability
this critical assumption. It seems clear from this new da
that real fault surfaces, which are not clean, smooth and
free, will not be described by the simplistic rate and sta
variable description. These data indicate that the experim
tal surfaces do experience arrest, and in that case the
friction laws predict an infinite and unphysical value of sta
friction. Moreover, the DR friction laws are not applicab
@20,21# throughout the entire sliding regime, the data up
which they are based having been obtained only at low s
ing velocities and over small total slip distances. In fact,
sliding progresses, velocity weakening behavior becom
transformed into velocity strengthening behavior as the s
faces accumulate dust and gouge between them. Velo
strengthening behavior is incompatible with frictional ins
bilities. On the other hand, the Burridge-Knopoff-Carlso
Langer friction law was simply assumed, as described in R
@2#, and its observational motivation is not clear. Moreov
it is not clear what value of mass to use in the BK mode
inasmuch as it is not clear what the massive elements
intended to represent. Finally, the CA friction laws repres
the effects of static and dynamic friction by specifying
rupture threshold, and a residual stress at which mo
ceases. While the CA friction models only approximate m
roscopic friction~see Sec. IX!, they are better representation
of the processes operating on random disordered surfa
Problems such as these, with all of these friction mod
have prevented the formulation of a unifying and physica
self-consistent viewpoint of the process of frictional slidin

An important recent development@15,22# has shown that
classes of mean-field CA models can be described by a
tially and temporally coarse grained field theoretic formu
tion, and that these models can often be treated as equ
rium models. The details of the field theory will be presen
elsewhere@23#. The fact that mean-field models can b
treated in a manner similar to equilibrium systems is ba
on an extensive series of simulations of mean-field a
‘‘mean-field-like’’ CA models, which we now describe.

III. CELLULAR AUTOMATON SLIDER BLOCK MODELS

Nearest neighbor CA models are often called slider blo
models~Fig. 1!. The first such model was the BK model.
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was also the first model to capture the scaling phenom
observed during earthquakes. The basic idea is that s
block models represent the kind of microscopic physics t
would be found at the smallest scales on a frictional slid
surface. The CA slider block models are distinguished fr
the original massive BK slider block model@2# in that the
position of each block through time is obtained from an u
date rule, instead of by solving a set ofN coupled differential
equations forN-element models, as is the case in the B
model. Farther neighbor models can also be implemente
represent elastic continua@11,14,24# using long range cou-
pling springs whose spring constants decay with distancr
as 1/r 3. An advantage of massless CA models is that
dynamics of largeN models can be examined on even mo
est workstations, which can be important when correlat
lengths are large and finite size effects are important.

Cellular automaton models are ‘‘freshman physics’’ mo
els for friction that have been widely studied in the literatu
@4,5,14,25–29#. Consider a two-dimensional array ofN fric-
tional blocks~or lattice site! with each block connected to it
nearest neighbor by coupling springs with spring const
KC , and to a loader plate by a loader spring with spri
constantKL . The loader plate translates at velocityV, in-
creasing the force on each sticking block until it slips wh
the force~stress! exceeds the static friction. In these mode
a static failure thresholdsF is prescribed, along with a re
sidual stresssR. When the stress on a site increases, eit
gradually or suddenly, to equal or exceedsF, a sudden jump
in slip occurs that takes the stress at the site down to a
sidual valuesR. The exact details of the jump process, a
whether it occurs synchronously or asynchronously with
jumps at other sites, is a model-dependent decision. Th
models assume a separation of time scales, the time scal
long term motion being far larger than the time scale
which adjustment of the slip state occurs. While the adv
tage of this friction model is ease of computational imp
mentation, the disadvantage is that it captures the physic
stick-slip sliding best for disordered microscopic surfac
and allows considerable latitude in specification of the ju
mechanism.

More generally, these lattice threshold CA models a
nonequilibrium systems that fluctuate around a tim
averaged steady state. In a sense, these systems are sim
equilibrium systems that also fluctuate around the tim
average equilibrium state. A subset of these models are
terministic, and are known to have periodic limit cycle
@22,26#. Another class of models@30–32#, also deterministic,
do not have a limit cycle attractor, but instead fluctuate in
complicated manner about a constant energy. The major
cus here is a third and separate class of slider block mo
that have a stochastic dynamics, and in which the blocks
massless, and the jumps are random variables uniformly
tributed about an average value.

IV. STOCHASTIC MODELS, MEAN-FIELD,
AND BOLTZMANN STATISTICS

As motivation, consider a typical equilibrium system f
which the total energyET' constant, except for small fluc
tuations, the mean square probability of which decrease
magnitude as 1/AN, whereN is the number of particles~or
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56 295TRAVELING DENSITY WAVE MODELS FOR . . .
degrees of freedom or modes!. In such a model, the interna
energyEi of each independent field variable~molecules,
spins, etc.! executes small fluctuations about the tim
averaged mean energy. Assuming that the system obey
postulate of equala priori probability, the method of mos
probable distributions@32# can then be used to show that th
expected distribution of block energies is Boltzmann. Div
ing the possible energy states into$q51, . . . ,Q% energy
bandedE(q) occupied with probabilityP(q), detailed bal-
ance requires that

(
q

P~Eq!51,

(
q

P~Eq!Eq5ET'const. ~1!

From Eq.~1! and the assumption of equala priori prob-
ability it is simple to show that the probability of a sta
P(Eq)} exp@2Eq /TSB#, the Boltzmann distribution, wher
SSB is the lattice average energy per degree of freedom@32#
(TSB is the mean energy, the ‘‘temperature’’!.

We apply these ideas to the slider block model. Consi
the Hamiltonian@15# for models with arbitrary range inter
actions having coupling springs of fixed strengthKC

HSB5
1

2(i HKL@f i2Vt#21
1

2
KC (

j5 int
@f j2f i #

2J . ~2!

The sum overi is over all sites in the lattice, and the su
over j is over all interacting blocks within the range of in
teractionR but excluding sitei . The time t represents a
loading time scale; it must be present inasmuch as load
due to the far field velocityV must occur prior to failure. The
order parameter field is the slip deficitf i(t)5si(t)2Vt,
si(t) is the slip of blocki at time t. The value ofHSB for a
particular configuration@f i # is ESB5HSB(f). The force
~stress! s i on block i is

sSB,i52]HSB/]f i52HKL@f i2Vt#1KC (
j5 int

@f j2f i #J .
~3!

Expression~2! can be formally obtained@15# from the
expression for the elastic strain energy of a fault embed
within an elastic continuum, in the presence of short ran
and long range cutoffs, by the use of a gradient expans
For the nearest neighbor models, the spring constantsKL and
KC are then related respectively to the 0th and 2nd mom
of the stress Green’s function. For the moment, we specia
to models withV*0, in which only one avalanche occu
following each loader plate update. Slider block models w
nonzeroV are discussed further in Ref.@14#.

A rule to generate the dynamics must be specified. T
simplest example is the modified Mohr-Coulomb frictio
law, in which each block has a prescribed static failu
thresholds i

F and a residual stress at which the block stic
s i
R . The dynamics are generated by a jump rule giving

position of the block as a function of the state of stress on
block. Jump rules such as these can be either determinist
stochastic. The basic jump rule is
-
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si~ t11!5si~ t !1J~s i !Q~s i2s i
F!, ~4!

whereQ(x) is a Heaviside step and the failure thresho
s i
F is spatially dependent. Examples@33# of deterministic

jump functionsJ(s i)5Dsi include

J15~s i2s i
R!/KT ,

~5!

J25~s i
F2s i

R!/KT ,

wheres i
R is a residual stress andKT is the total spring con-

stant (KT5KL12dKC , d is the dimension of space!. This
expression is valid also for a model with longer ran
springs ~interactions!, in which each block interacts with
NR other blocks via springs with spring constantsKC . Each
block jumps from its current stress at failure to the positi
having the specified residual stresss i

R , thus Eqs.~4! and~5!
are examples of a deterministic rule.

A stochastic jump rule can also be used@15#. For these
models, the jump is given by

Js5J1~12Wr!, ~6!

whereW is a ~constant! width chosen from 0<W<1, and
r is a uniformly distributed random number onrP@0,1#.

In the models described in the following, it will be as
sumed thats i

F5sF are constant, ands i
R5sR are constant.

Noise in these models arises both from the initial conditio
and from randomness in the jump described byW, which
represents random microscopic processes associated
wear and spatially inhomogeneous properties of the slid
surface. Thus, in the limit ofV50, the parameters tha
should completely determine model behavior areKL , KC ,
sF, sR, andW.

To understand the results of the simulations carried
below, we observe that the slip deficitf i(t) of a block fluc-
tuates around a time-averaged valuef̄ i

f̄ i[
1

TE0
T

f i~ t !dt. ~7!

The fluctuating partz i(t) is then defined by

f i~ t !5f̄ i1z i~ t !. ~8!

For convenience in analyzing data obtained in simulatio
using the jump~6!, we normalize the fluctuationz i(t) to
unity by defining the variancev @2#:

v1
2[

1

TE0
T

@z i~ t !#
2dt. ~9!

Then

z i8~ t ![
1

v i
z i~ t !. ~10!

Considering models withV→0, the Hamiltonian~2! can
now be written as

HSB[H01H11H8, ~11!
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296 56RUNDLE, KLEIN, GROSS, AND FERGUSON
where the various terms are defined as

H0[
1

2(i HKL~f̄ i !
21

1

2
KC (

j5 int
@f̄ j2f̄ i #

2J ,
H1[(

i
v i HKLf̄ iz i81

1

2
KC (

j5 int
@g i j z j82z i8#@f̄ j2f̄ i #J ,

~12!

H8[
1

2(i v i
2HKL~z i8!21

1

2
KC (

j5 int
@g i j z j82z i8#2J ,

and where

g i j5
v j

v i
. ~13!

We accumulated time-averaged statistics of the ene
distribution corresponding to the energy given by Eqs.~11!
and~12!. Taking the time averageH̄SB of HSB in Eq. ~11!, it
can be observed that

H̄05H0 ,

H̄150, ~14!

H̄8Þ0.

H0 is a constant,H1 executes small fluctuations about 0, a
H8 fluctuates about some nonzero value. The fluctuation
H1 will be expected to have a Gaussian distribution sin
H1 is clearly a linear sum of random variablesz i8 .

Since we are interested in the nonzero time-averaged
cupating numbersnq for the various energy bands center
onEq , we focus attention on the last of Eqs.~12!. We there-
fore define~see below!

H̄8[2TSB[(
q

nqEq . ~15!

By comparison of Eq.~15! with Eqs.~1! and~2!, we surmise
that the numbernq of blocks that occupy energy levelsEq
should display Boltzmann statistics, assuming that all c
figurations have equala priori probability.

We expect that the property of microscopic chaos@32#
will exist in the slider block models when the interactio
between neighboring blocks is large enough to self-organ
the blocks against the competing stochastic noise from
block jumps. In turn, some level of stochastic noise must
present, particularly for small values ofKC , to prevent the
blocks from phase locking into a limit cycle@28#. In other
words, the random jump function introduces a stocha
noise, allowing the system to explore its phase space ef
tively. SinceR5(KC /KL)

1/2 is a measure of the range o
interaction, models with large values ofR are expected to
display mean-field characteristics. Mean-field models wit
noise level are more likely to demonstrate Boltzmann sta
tics, and to have decreasing amplitude fluctuations at all
the largest wavelengths. Therefore, the assump
(qnqEq' const is more likely to be valid.
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For mean-field slider block models in two dimensio
@15#, the distribution of energies is notp(Eq)
} exp@2Eq /TSB#, but p(Eq)}Eq exp@2Eq /TSB#. It is clear
that the energyE of a block is the sum of energies containe
within all the springs connected to that block@see Eq.~2!#.
The energy in thei th spring is itself proportional to the
square of a stochastic variablef i(t), which is maintained in
a random state as a result of the random jump amplit
W. ThusE is proportional to the sum of the squares of a
of random variables. Standard results from probability the
@34# indicate that with suitable normalization of the rando
variables, we should expectE to be distributed with ax
square distribution withn degrees of freedom, i.e.,p(E)
}En/221 exp@2E/TSB#.

For large values ofKC /KL , one would expect that the
coupling springs would store most of the energy. For
nearest neighbor models studied here, this implies
n54, andp(E)}E exp@2E/TSB#. However, this reasoning
seems inconsistent with the results obtained by the metho
most probable distributions@32#, because the number of de
grees of freedom for a gas of particles is effectively infini
One would not, therefore, expect to obtain the simple re
p(E)} exp@2E/TSB#.

A different, and perhaps more consistent, line of reas
ing is based on the fact that the fractal dimensionDf for
mean-field systems@35# is Df54. If the number of degrees
of freedomn for each block~the effective dimension! is then
assumed to ben5Df , one obtains the observed resu
Moreover, for the simple case derived using the two co
straints of Eq.~1!, n is Df54 minus the two constraints o
Eq. ~1!. Hence n5Df2252 degrees of freedom, an
p(E)} exp@2E/TSB# as found from the method of mos
probable distributions. Although preliminary results@22,23#
seem to validate this approach, we are now in the proces
more extensive testing using simulations of models with lo
range springs.

To determine whether these predictions of Boltzmann s
tistics are valid, the energies of blocks in a nearest neigh
slider block simulation having random jumps were measu
@15#. For an unbounded system, a normalized energy fu
tional H9(z i) can be written in terms of the normalized sl
deficit z i8 on thei th block as

H95
1

2(i HKLz i8
21

1

2
KC (

j5 int
@z j82z i8#2J . ~16!

Measuring the energies was accomplished by defin
10 000 energy bands centered on eachEq ,
@q51, . . . ,10 000#. Upon termination of all block instabili-
ties following a loader plate update, the number of blo
energies falling into each narrow energy band are coun
Defining

P~Eq!5nq /N ~17!

as the probability density function, and assuming that
P(Eq) are normalized Boltzmann functions as describ
above

P~Eq!5
Eq

TSB
2 exp@2Eq /TSB#, ~18!
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the expected normalized cumulative distribution functi
~CDF! F(E8) is obtained from

F~E8!5E
0

E8
E8 exp @2E8#dE8

512~11E8!exp@2E8#, E85E/TSB. ~19!

The quantityTSB can be related to the measured time a
lattice average of the energyH8(t), which we denote as

^H̄8&. Using Eq.~18!, we obtain the time-average energy p
block TSB as

TSB5~1/2!^H̄8&. ~20!

Equations~18!–~20! represent a prediction, with no free p
rameters, of the energy distribution obtained from simulat
data.

It was emphasized in Ref.@11# that Boltzmann statistics
apply only to mean-field models. An example of a mea
field Boltzmann model is given in Fig. 1, which visual
shows the quality of the fit between the numerically me
sured energies for the normalized energy functionalH9 and
the predicted curve. The CDF prediction has a decay len
that is obtained by measuring (1/2)^H̄9&. That value is then
used together with Eq.~19! in evaluating the CDF, the
dashed curve. The dashed, theoretical CDF curve is alm
indistinguishable from the experimentally determined C
measured from the simulations~dots!.

Figure 2 shows a comparison between two mean-fi
models with different model parameters, thus different te
peraturesTSB1 andTSB2. In that figure, the logarithm of the
ratio P1 /P2 is plotted against energyE, where theP’s are
the Boltzmann functions in Eq.~18!. Thus on a semilog plot
ln (P1 /P2) should be a linear function ofE, with slope deter-
mined by 1/TSB121/TSB2. Figure 2 confirms this result.

Figure 3 illustrates the relationship between the tempe

FIG. 1. Cumulative distribution function of block energiesEq

from our simulation~dots! using Eqs.~19! and~20!. Model param-
eters for the plot areKL51, KC525, sF535, sR520.35, and
W50.1. The mean scaled energy is 5.34, or equivalen
TSB52.67. The dashed line between the dots is Eq.~19! using
TSB52.67 as the decay length. This is a mean-field model,
illustrates the quality of fit between simulation data and theory.
d

r

n
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-

th

st
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ture TSB and the model parametersKL , KC , sF, andsR.
Since the energy is stored in the springs, the energy sh
be related to a quantity such as; ~spring constant! 3 ~mea-
sure of jump size! @2#. Thus we search for a relation such

TSB}Ex@KTJ
2#, ~21!

whereEx@ # is the expectation operator arising from the s
chastic nature of the random variabler @see Eq.~6!#. Using
Eq. ~6!, the expectationEx@KTJ

2# is easily shown to be

y

d

FIG. 2. Probability density functions for two mean-field mode
@P1(E),P2(E)#, together with ln$P1 /P2%, plotted againstE. Both
P1 andP2 are expected to have the form of Eq.~18!, but their ratio
should cancel the density of states prefactor, leaving a pure Bo
mann factor, exp@2E(1/T121/T2)#. On a semilog plot, this func-
tion plots as a line, given by the squares.

FIG. 3. Average energy 2TSB5^H̄8& of models against the
quantity given on the right side of Eq.~24!. Dashed line has a slop
of 1.
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Ex@KTJ
2#5Ex@KTJ0

2~12Wr!2#5KTJ0
2@12W1 1

3 W
2#
~22!

with

J05
sF2sR

KT
. ~23!

In Fig. 3, we plot the average energy 2TSB5^H̄8&, against
the right hand side of Eq.~22! multiplied by the constan
number 0.14. The latter is obtained by requiring that the b
fitting line have a slope of 1, and that the best fit line pa
through the origin. The ‘‘temperature’’ or energy of slid
block models is thus given by

TSB'0.07@KTJ0
2~12W1 1

3 W
2!# ~24!

to within small error. The factor of 0.07 represents t
‘‘Boltzmann constant’’ for this class of models, and is ev
dently model-class dependent. The mean-field region is
low energy region at the lower left corner of the figure. It c
be seen that Eq.~24! provides a good representation of th
average energy of the model, even for non-mean-field m
els ~upper right portion of the figure!.

The results obtained here depend only on two conditio
~1! the system executes small fluctuations around a stat
fixed internal energy; and~2! that enough noise is present
allow the system to fully explore its phase space. It can a
be shown that a separate condition requires that the rat
forcing be low@22#. Because this line of reasoning does n
depend on the massless nature of the slider blocks, we ex
that similar results will be observed in some classes of m
sive slider block simulations as well. Since the noise am
tude required to generate the Boltzmann distribution
creases as the mean-field regime is approached, we
predict that the amplitude of the external noise needed
produce the Boltzmann distribution should be vanishin
small in the mean-field limit. It is therefore likely that Bol
zmann fluctuations will be important in nature, and that th
fluctuations may be the origin of extended spatial corre
tions observed in real earthquake fault systems~see, for ex-
ample, Ref.@36#!.

V. TRAVELING DENSITY WAVE MODEL

To our knowledge, all models for earthquakes and fr
tional sliding that have been examined to date begin by p
tulating a dynamical equation to describe the evolution of
system. However, to begin with an assumption of a Newt
ian balance of forces for such a dissipative system leave
with questions, such as~1! how to understand the energeti
of the jump transitions and~2! the physical origin of scaling
in these models, as well as the origin and identity of
scaling fields. An intuitively more appealing approach wou
base the physics on the construction of a functional poten
with the resulting force balance equations arising as anˆ-
Langevin equation obtained from variation of the function
potential. This idea is the basis of the traveling density wa
model.

Support for this approach arises from the result descri
above that mean-field CA models for friction have a Bol
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mann energy distribution. Using this as the starting po
Ref. @22# has shown how to construct a spatially and temp
rally coarse grained Itoˆ-Langevin equation for a mean-fiel
CA model. The existence of such an Itoˆ-Langevin equation
in turn implies the existence of a functional potential for t
dynamics. We are therefore motivated to develop a form
ism, based both upon theoretical ideas as well as upon la
ratory and field data@37–42#, to describe the threshold dy
namics of these driven nonlinear systems. We will ag
couch the discussion in terms of a model for earthquak
although the final result clearly has a more widespread
plicability.

We begin by considering two elastic media in contact a
surface upon which slips(x,t) can occur in response to ap
plied shear stress. Sliding is driven@43# by the imposition of
a spatially constant displacementsB or stressessB applied at
distances remote from the slip surface. For such a system
elastic stressse(x,t) on the slip surface at (x,t) can be writ-
ten in terms of~1! a stress Green’s function~spatial interac-
tion!, written schematically asT(x2x8); ~2! the externally
applied shear stresssB , and ~3! the slip deficit
f5s(x,t)2sB

se~x,t !5E T~x2x8!f~x8,t !d2x81sB . ~25!

Note that the elastic stress is a functional off, which we
denote asse@f#, and that we consider one side of the su
face ‘‘fixed,’’ with a coordinate systemx attached to the
‘‘moving’’ side.

There is also a frictional stresss f on the surface resisting
slip. In formulating the general characteristics of the frictio
we refer to the extensive literature@37–42# on macroscopic
friction and wear of solids, particularly the extensive com
lation of data described in Refs.@37# and@38#. We note that
s f arises from the cohesion between the sliding surfaces,
that the contact between irregular surfaces will vary as s
ing progresses. Following Ref.@38#, we therefore takes f at
each location to be a functional

s f5s f
„s~x,t !;c;r …. ~26!

In Eq. ~26!, s(x,t) is the total slip experienced by the point
coordinatex at time t, c represents a set of parameters d
scribing the cohesion between the surfaces, andr represents
a set of random parameters. Both of the parameter sets
resented byc and r are in general site~location! and time
dependent. Time dependence describes irreversible wea
of the surface, i.e., random alteration of surface propertie
a result of microscopic surface damage during sliding. N
thats f is a function of space and time through the space
time dependence ofs, c, and r . Also, c should depend ex-
plicitly on the normal stresssN pushing the surfaces into
contact.

Now we consider a state of deformation of the syst
~solid1surface! induced by a far field displacementsB . The
balance of forces@43,44# on the surface requires that

se@f#5s f@f1sB ;c;r # ~27!

using the definition off. We are interested here in mode
with sB50, and in which the boundaries are translating u
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formly, so thatsB5Vt, whereV is the velocity of the ‘‘mov-
ing’’ side with respect to the ‘‘fixed’’ side. Equation~27! is
then

se@f#5s f@f1Vt#. ~28!

We remark that Eq.~28! has a very simple interpretation
The instantaneous balance of forces at a sitex can be viewed
in the (s,f) plane as the intersection of a fixed cur
se@f# with a leftward moving ~traveling! wave
f f@f1Vt#. This observation motivates the TDW name f
the model.

The existence of a functional potentialU@f#, which fol-
lows from prior results@22# is equivalent to the assumptio
that Eq.~28! is the Euler-Lagrange equation arising from th
potential@43,44#. We therefore define the potentialU@f#

U@f#5E@f#2S@f1sB ,f#, ~29!

so that Eq.~28! arises fromU@f# by functional differentia-
tion

dU

df
50. ~30!

U is a Lyapunov functional that plays a role similar to
equilibrium ‘‘free energy functional.’’

Construction ofU proceeds by taking proper account
both the elastic and the cohesive forces acting across
sliding surface. It is straightforward@15,43,44# to show that
the ‘‘elastic energy’’E@f# exists and has the form

E@f#5E E $2 1
2 @T~x2x8!f~x,t !f~x8,t !d2x8#

1sBf~x,t !%d2x. ~31!

S is likewise related tos f by functional differentiation

s f52
dS

df
. ~32!

The functionalS@f1sB ,f# defines the energy associate
with the cohesive forces acting on the surface@44#. Since the
cohesive forces f is by assumption bounded and continuo
on the interval (2`,`), the Fourier expansion theorem@45#
states thats f has a cosine series representation in the v
able (f1sB). Using expansion parametersAn , kn , and
h5A0, S@f1sB ,f# can then be obtained by functional in
tegration ofs f

S@f1sB ,f#5E F(
n

An cos$kn„f~x,t !1sB1«n…%

2hf~x,t !Gd2x. ~33!

The parametersAn , kn , «n , and h describe the cohesiv
~‘‘ c’’ ! properties of the frictional forces. These paramet
can also have a random part~‘‘ r ’’ ! associated with processe
of ‘‘wearing’’ on the surface, i.e., general time depende
changes in cohesion associated with the accumulation o
reversible surface damage.
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Now suppose that the system resides in a nonmini
potential energy state that does not satisfy Eq.~30!. It is
reasonable to assume that the fault system evolves pe
tently toward minimum potential energy, and thus grea
stability

dU5dfS dU

df D<0. ~34!

Equation~34! then implies that to first order indf, the evo-
lution of the system in the presence of noise is obtained
solving the Itô-Langevin equation

]f

]t
52G

dU

df
1h~x,t !. ~35!

The noise is assumed to bed correlated

^h~x,t !h~x8,t8!&5b21d~ t2t8!d~x2x8!, ~36!

andb is a constant inverse noise amplitude.
To explore the consequences of these ideas, suppose

s f is dominated by only one of the Fourier terms for som
wave numberk

U@f#5E E $2 1
2 @T~x2x8!f~x,t !f~x8,t !d2x8#

22gc cos@k$f~x,t !1Vt1«%#1hf~x,t !%d2x.

~37!

Both 2gc and h depend in general on the normal stre
sN , which in turn depends@46# on V. Using Eq.~35!, the
corresponding Itoˆ-Langevin equation is

]f~x,t !

]t
5G H E T~x2x8!f~x8,t !d2x822gck sin$kf~x,t !

1Vt1«~x,t !%2hJ 1h~x,t !. ~38!

The ‘‘thermodynamics’’ of this model are obtained b
searching for spatially uniform solutionsf0(t) to Eq. ~30!
using Eq.~37!, with h50 and«50. The functional density
u0@f0# is

u0@f0#5 1
2 KLf0

222gc cos$k~f01Vt!%1hf0 , ~39!

where KL.0 is minus the integral ofT(r ). The Euler-
Lagrange equation corresponding to the potential~39! is

KLf0522gck sin$k~f01Vt!%2h. ~40!

Clearly if k andgc are small,u0@f0# is concave up, and ha
only a single~global! minimum. On the other hand, ifgc or
k are sufficiently large,u0@f0# may have more than on
minimum, with all but the lowest energy state being me
stable. More than one minimum are possible when

]2u0
]f0

2 5KL12gck
2 cos$k~f01Vt!% ~41!
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FIG. 4. Stresss(t) and potential energyU(t) againstf in mean-field limit, forL52 ~top! andL50.5 ~bottom!, and for two distinct
times t1.t0. Top: At time t0, only one globally stable state exists~square!; at time t1, metastable~filled circle!, unstable~open circle!, and
globally stable~triangle! states now exist. Bottom: At both timest0 and t1, only one globally stable state exists~square att0 and circle at
t1).
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has at least one zero. Metastability can only occur if
parameterL.Lc51, where

L52gck
2/KL . ~42!

As will be clear from the discussion below, (L2Lc) can be
regarded as a scaling field for this potential. Qualitative
L can be interpreted as indicating the number of lo
minima. An immediate prediction of the theory is that as t
stiffness of the surrounding elastic mediumKL is increased,
a transition should occur, from the appearance of sud
unstable jumps~decay from metastability!, to stable sliding
as L decreases. Such a transition is commonly obser
@18,20,37,38,47# in laboratory experiments.

The TDW model represented by Eqs.~39! and ~40! has
the simple geometrical interpretation shown in Fig. 4. T
intersection pointf* between the fixed curve and the lef
ward traveling wave is time dependent.f* slowly becomes
more negative~strain accumulation! until a point is reached
at whichf* increases more rapidly in a positive directio
~slip event!. If the cohesion varies sufficiently in space or
amplitude, leading toL.1, unstable slip can occur at fixe
far field displacement in response to the influence of fluct
tions ~Fig. 4 top!. One of these events corresponds to de
from the metastable well. Otherwise, ifL,1, the surface
slips in a stable manner only in response to increasing
e

,
l
e

n

d

e

-
y

ar

field displacementVt, regardless of the presence of fluctu
tions ~Fig. 4 bottom!. In that case, no metastability is po
sible.

In addition to (L2Lc), time ‘‘t ’’ can also be regarded a
a scaling field for the line of critical points defining the spi
odal. It can be observed from Fig. 4 that when the system
in a metastable energy state higher than the global minim
the passage of time drives down the height of the ene
barrier toward the spinodal, and the system nucleates into
lower energy state. This process recurs with per
P52p/(kV) so that the spinodal occurs at time
t5tSP1nP,n5 integer.

VI. EXPANSION ABOUT THE SPINODAL

The equation that describes the nucleation process is i
tical to that obtained in studies of spinodal nucleation@48#,
but where the scaling field is proportional t
dt5(tSP2t)mod(P). This equation is

2KC¹2c1KLVdt2ac250. ~43!

In Eq. ~43!, c(x,t) is the fluctuation off(x,t) about the
spinodal value, andKC and a are nonzero, positive con
stants.

To derive this result, we begin by considering a model
which long spatial wavelength fluctuations are present.
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that case, the fieldf5f(x,t) depends on position, and th
Lyapunov functional densityu0 is modified by the presenc
of a termKCu¹fu2

U8@f#5E E $ 1
2 @KLf

21KCu¹fu2#

22gc cos@k$f1Vt%#1hf%. ~44!

The corresponding Euler-Lagrange equation is

KLf2KC¹2f12gck sin$k~f1Vt!%1h50. ~45!

In Eqs.~44! and~45!, the constantKC is proportional to the
second moment of the stress Green’s functionT(r ). Denot-
ing the spatially constant value off0 at the spinodaltSP by
F(tSP), we expand about the spinodal by writing

f~x,t !5F~ tSP!1c~x,t !,
~46!

t5tSP2dt,

where uc(x,t)u!uFu, andkVdt!2p. Note that the spatia
averagê c(x,tSP)& of c(x,tSP) must vanish at the spinoda
which from Eq.~43! implies thatc(x,tSP) must vanish iden-
tically. Therefore, we expect that

c~x,t !}dt r , ~47!

where the exponentr.0.
The first step in obtaining Eq.~43! is to solve the pair of

equations defining the spinodal to obtain the values ofF and
tSP

KLF12gck sin$k~F1VtSP!%1h50, ~48!

KL12gck
2 cos$k~F1VtSP!%50. ~49!

The second step is to substitute the expressions~46! into Eq.
~45!

KL$F1c%2KC¹2c12gck sin$k~F1c1VtSP2Vdt !%

1h50. ~50!

The third term can be written as

sin $k~F1c1VtSP1Vdt !%

5 sin$k~F1VtSP!% cos$k~c2Vdt !%

1 cos$k~F1VtSP!% sin$k~c2Vdt !%. ~51!

Using the fact thatc anddt are small, we approximate th
right hand side of Eq.~51! as

sin$k~F1VtSP!%@12~k2/2!$c2Vdt%2#

1 cos$k~F1VtSP!%$k~c2Vdt !%. ~52!
Substitution of Eq.~52! into Eq. ~49! and expanding
yields the equation

@KLF12gck sin$k~F1VtSP!%1h#2KC¹2c

2c@KL12gck
2 cos$k~F1VtSP!%#

22gck
2Vdt$cos@k~F1VtSP!#%

2gck
3$c22cVdt1~Vdt !2% sin$k~F1VtSP!%50. ~53!

The first and third terms, in the square brackets of Eq.~53!,
are identically zero, by virtue of Eqs.~48! and ~49!. Using
Eq. ~49! to rewrite the term proportional todt, the remaining
nonzero parts of Eq.~53! are

2KC¹2c1KLVdt2gck
3$c22cVdt1~Vdt !2%

3sin$k~F1VtSP!%50. ~54!

Near the spinodal we search for scaling solutions of Eq.~54!,
which in addition to Eq.~47! implies that spatial coordinate
x vary significantly on a spatial~correlation! length scalej

j}dts. ~55!

If Eqs. ~47! and~55! are inserted into Eq.~54!, it can be seen
that Eq. ~43! is obtained self-consistently, withr51/2 and
s521/4, and with all other terms being of higher order
dt and therefore negligible ast→tSP. Thus the solution
c(x,t);(KLVdt)1/2c̃(uxu/j), where the correlation length
j;(KLVdt)21/4 and c̃ is nonzero and bounded att5tSP.
This is precisely the kind of low-amplitude, large spatia
extent solution that has been observed in recent field d
@10#. The constant a in Eq. ~43! is
a5gck

3sin$k(F1VtSP)%, which is positive and does no
vanish at the spinodal. The latter can be seen by making
of Eqs.~48! and ~49!.

VII. IMPLICATIONS OF TDW MODELS FOR SCALING

Because Eq.~43! has been extensively studied in the l
erature in other problems@35,48#, a number of results are
immediately available, and predictions can be made. For
ample, the frequency of spinodal fluctuationsn(A) of area
A, which are realized here as clusters of failed sites, is gi
by the Fisher-Stauffer relation@49#

n~A,dt !5
n0
Az

exp$2k@KLVdt#1/ssA%. ~56!

The parameterk is a constant determined by fitting the dat
The exponentss is the surface exponent, and the expone
z is eitherz5t21 or z5t, in terms of the Fisher-Stauffe
exponent@49# t. The relationz5t characterizes fluctuation
~earthquakes! about the spinodal, whereas the relati
z5t21 describes the frequency of ‘‘arrested’’ nucleatio
events~mainshocks! @22,23#.

Formally, one can also expand about the spinodal for ti
intervals following tSP. Then instead of Eq.~46!, time is
expressed as
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t5dt2tSP. ~57!

The entire development of the preceding section follo
through as above, withdt replaced by2dt in the spinodal
equation~38! and in the Fisher-Stauffer relation~56!.

However, the validity of expanding about the spinodal
t.tSP can be questioned on physical grounds. In particu
the applicability of the Fisher-Stauffer relation~56! is not
clear, since it was originally proposed to describe fluct
tions in systems residing at local minima~equilibrium and
metastable equilibrium!. For t.tSP, the metastable mini-
mum no longer exists. However, it will be shown~see dis-
cussion below! that the Fisher-Stauffer relation can be us
to obtain an Omori-type aftershock decay relation for fo
shocks. It is therefore tempting to propose the hypothe
that Eq.~56! also describes the fluctuations for times imm
diately after the spinodal as well, based on the fact that
~57! leads to the same kind of equation as Eq.~43!, but with
dt redefined. Note that evidence for the existence of Fish
Stauffer scaling in the unstable region has been found in
pendently in simulations of systems undergoing spinodal
composition@50,51# for short time intervals following the
quench.

We can obtain values for all the scaling exponents, a
from these predict a range for the Gutenberg-Richterb value,
by making use of standard scaling relations known for s
tems with two scaling fields. We define two additional exp
nentsg andb for the order parameterc(x,t) and the sus-
ceptibility x(x,t) of c(x,t) to small changes in the scalin
field @KLVdt#

c~x,t !;~KLVdt !1/2c̃~ uxu/j!}@KLVdt#b, ~58!

x~x,t !;
]c~x,t !

]@KLVdt#
}@KLVdt#2g. ~59!

From these definitions,b51/2, andg51/2, and using the
scaling relations@49#

t22

ss
5b, ~60!

32t

ss
5g, ~61!

we find t55/2, ss51, i.e., the ‘‘magnetic’’ values oft,
ss . We now consider two problems,~1! Omori’s law and~2!
the Gutenberg-Richterb value.

Omori’s law. The rate at which the number of aftershoc
decay following a major earthquake obeys a relationship
observed by Omori following the 1891 Nobi, Japan, ear
quake
s

r
r,

-
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is
-
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nas5
K

~c1Dtms!
p . ~62!

Here nas is the rate of aftershock occurrence,c andK are
constants,Dteq5t2tms is the time interval since the main
shock, andp is an exponent usually found from observatio
@9,52,53# to bep'1. Equation~62! is essentially an inverse
time law modified to account for the fact that the rate
aftershock occurrence remains finite at times just after
mainshock. The validity of Eq.~62! is illustrated in Fig. 5,
which is a log-log plot of frequency of all aftershocks again
time following the June 28, 1992 Landers earthquake. T
temporal decay of activity fits a line with a slope ofp'1 as
illustrated.

Recently it has been realized that the increase in the
of foreshocksnfs prior to the mainshock follows the sam
form @54,55# of law as Eq. ~61!, with Dteq replaced by
2Dteq, and with an exponentp8. Moreover, it is also ob-
served thatp85p'1, although the constantsK and c de-
pend on the individual foreshock or aftershock sequence

Using our results, we can obtain a prediction for the fo
of an Omori’s rate law, while remembering the caveats fro
discussion just below Eq.~57!. We first identify the observa-
tionally defined intervalDteq5t2tms since the mainshock
with the time interval since the spinodal~at which scaling is
observed!, thus Dteq'2dt. Consider first the problem o
foreshocks, in whichDteq is replaced by2Dteq. To calcu-
late the frequency of events at timedt in terms of the fre-
quency at timedt50, we use the event frequency relatio
~56! to integrate over a band of events lying between a
(Amin ,Amax)

FIG. 5. Frequency of aftershocks as a function of time for
June 28, 1992 Landers earthquake.
E
Amin

Amaxn~A,dt !

n~A,0!
dA5H exp@2k~KLVdt !1/ssAmin#2 exp@2k@KLVdt#1/ssAmax#

k@KLVdt#1/ss J . ~63!
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We see that for timesdt.0, the frequency varies with time
according to (dt)21/ss, modified by an exponential deca
Since ss51, an Omorip8 value of p851/ss51 is pre-
dicted, in agreement with observation@9,52#. Calculation of
the aftershock rate is carried out in the same way, withdt
replaced by 2dt. The value of p is the same, and
p5p851/ss51 is predicted, in agreement with observ
tions of real fault systems.

Integrating over all events up to the size of the ma
shock, one finds a foreshock~aftershock! frequency

ntot~dt !5ntot~0!H 12exp@2k~KLVdt !1/ssAmax#

k@KLVdt#1/ss J . ~64!

This relationship behaves asymptotically as 1/dt1/ss for
‘‘large’’ dt, where the approach to the asymptotic form
controlled by the size ofAmax, the mainshock area. Agai
p85p51/ss51 is found. Recall that Eq.~64!, which was
obtained from Eq.~56!, is valid only for time intervals so
small thatkVdt!2p. Since 2p/k is the nominal slip dis-
tance in the earthquake, 2p/(kV)5Trec, whereTrec is the
nominal recurrence time for the largest earthquakes. Thus
condition for smalldt reduces todt!Trec. Observations of
real earthquakes@9,56,57# indicate that frequency of seismi
activity ~aftershocks! has the characteristic;1/dtp scaling
form only when this condition is satisfied. Finally, typic
values ofAmax are extremely large, of the order of 108 m2

for a magnitude 6 earthquake. Thus the approach to
asymptotic form 1/dt1/ss is expected to be fast compared
the total timedtmax over which Eq.~64! is valid, as observed
@9#.

On the basis of empirical observations, a stretched ex
nential form for foreshock buildup and aftershock decay v
similar to Eq.~63! has been suggested@56,57# that fits seis-
micity data as well or better than the classical Omori la
The corresponding cumulative frequency of events on
interval (0,2dt), which we denote byNtot is easily found for
the expected value 1/ss51

Ntot~dt !5 lim
«→0

S ntot~0!

kKLV
D $ ln~2dt/«!2G inc~«,2dt !%.

~65!

HereG inc is the incompleteg function @58#. It can easily be
seen thatNtot(dt) has the well defined limitNtot(0)50.

Equations~63!–~65! for aftershocks and their counterpar
for foreshocks also predict that the rate of large aftersho
decays more rapidly than smaller events as2dt increases.
Similarly, the rates of large foreshocks increase more rap
than do the rates of small events asdt decreases. To test thi
prediction, we plotted the cumulative distribution fo
Landers aftershocks with time, for groups of equal numb
of events~Fig. 6!. It can be seen from the data that the larg
aftershocks do relax much more rapidly with time than
smaller events, although the effect is overpredicted by
~63!. We point out that modifications of inverse power law
in dt have been shown to be useful in earthquake forecas
@59,60#. These authors show that in some cases, leading
der corrections to thep value take the form of complex ex
ponents. We will address these ideas in a future publica
@61#.
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Gutenberg-Richter b value. The Gutenberg-Richter rela
tionNGR(m) is technically the function that describes the t
of a cumulative distribution. Using parameters$b,a%,
NGR(m) is the cumulative frequency of events with magn
tude larger than some valuem

lnNGR~m!52bm1a. ~66!

Observations indicate thatb;1, but this simple statemen
obscures the fact that observed values ofb can vary from
roughly 0.6 up to 2~see discussion below!. Theb value can
be related to, but is not the same as, the parameter in
relation between frequency and radiated energyER ~see, for
example, Ref.@52# for details!. The latter has sometime
been quoted in the nonseismological literature as theb
value,’’ when in fact it is not. A careful distinction should b
made between the total energy lostEtot ~as in a sandpile
avalanche!, and the radiated energyER .

We can use the Fisher-Stauffer relation~56! to obtain a
scaling relationship forb in terms ofz and another exponen
c, which defines the scale dependence of the seismic mom
M0 on the event areaA

M0}A
c. ~67!

Together with the moment-magnitude relation@62#:

m5
2

3
lnM0210.7, ~68!

we find by integrating Eq.~56! over areas@A,`), using Eqs.
~67! and ~68!, and equating powers of the area that

b5
3~z21!

2c
. ~69!

Recent works@63–69# suggests thatc lies between 1 and
3/2. z can range from 3/2–5/2, depending on whether ma
shocks~arrested nucleation events@22,23#! or foreshocks and
aftershocks~spinodal fluctuations@22,23#! are of interest.
Thusb is predicted to range from~0.5, 2.25!. Observed val-
ues @65,66,68# are typically in the range from 0.8–2.1, a
though declustered values@55# can be as low as 0.6, wherea
swarms of events can sometimes haveb values @9# up to
perhaps as large as 2. The predictions of our theory t
bracket the range of the observed values.

Simulations

We carried out a series of simulations to check our
sults, and we give an example that lends support to the
sults we found from analyzing Eq.~69!. We solved the evo-
lution equation~38! using a modified Newton’s method@61#
including noise terms, on a 1003100 lattice of sites using an
interaction given byKC /r

3, with each block connected to
132 sites. The quantitiesgc andk were held fixed, producing
a simple time dependent potential. Note that the cohes
forces are not scale independent as perhaps is implied by
observations of fractal topography on fault surfaces@25#.
Sources of noise in the simulation were provided both fr
random phases« that changed after each site decayed fro
the local minimum, as well as noiseh inherent in the modi-
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fied Newton method used for solving the equations. Figur
shows a plot of frequency of occurrence against event s
There are three regions apparent on the plot. The regio
the left of the local maximum nearA5100, which is deter-
mined by the noise amplitudeh50.01, is noise dominated
The region betweenA5100 andA;5000 is the scaling re
gion that represents spinodal fluctuations, and has a s
z5t52.5 as predicted. The regionA.4000 represents
nucleation events, in which large sections of the lattice de
from the metastable well simultaneously.

Figure 8 is a cumulative Gutenberg-Richter plot for t
same simulations as in Fig. 7, showing the plot with a
without nucleation events included. The slope of the sca
region representing spinodal fluctuations isb;2.2. This
value can be checked against Eq.~69! using z5t52.5 and
c;1, giving a predicted value forb52.25. The valuec;1
arises for our simple model~38! becausegc is neither site
dependent nor self-similar. It should be pointed out that th
values forb ~and p) were obtained for a model of only
single isolated fault. The finite extent of real fault segmen
and the relative numbers of small faults to larger ones w
clearly affect the scaling distributions to some degree.
plan to address this fundamental problem in future work.

VIII. FOKKER-PLANCK EQUATION AND NUCLEATION

Under the conditions described in Eqs.~35!–~37!, it is
straightforward to show that there exists an associa
Fokker-Planck equation describing the time variation of
probability densityf @f# on the slip deficit variables@70#.
The stationary solution of this equation is

f @f#5Z21 exp$2bU@f#%, ~70!

U@f# thus plays the role of an equilibrium ‘‘free energ
functional,’’ the normalization constantZ plays the role of
the partition function of equilibrium statistical mechanic
and the noise correlation amplitudeb plays the role of an
inverse temperature.

As a result, for givenL.1, the lifetime in the metastabl
stateGm can be obtained by reading off the results fro
Refs.@48,71#

FIG. 6. Cumulative Landers aftershocks in days since ma
shock. All magnitude bins have;970 events. The largest even
bins clearly relax the most rapidly, as predicted by Eq.~27!.
7
e.
to

pe

y

d
g

e

,
ll
e

d
e

,

Gm;exp$KC~KLVdt !3/22d/4%, ~71!

whered is the dimension of space (d52 for a planar fault!.
Moreover, one expects@48,71# that nucleation will occur
near the Becker-Do¨ring limit

KC~KLVdt !3/22d/4}b21, ~72!

where the constant of proportionality is in the range of 2–
Referring back to the discussion associated with Eqs.~1!–

~6!, it is now clear that the existence of Boltzmann-type d
tributions is associated with the presence of long range in
actions and the mean-field regime. Note that 1/r 3 interactions
with physical cutoffs at both small and large wavelengths
the physics by which defects in elastic solids interact. W
therefore expect that the results of these mean-field theo
will be applicable to earthquake fault systems. More imp
tantly, it can now be seen that the TDW model leads
methods of analysis for earthquake faults that are often
morphic to those used in equilibrium statistical mechanics
particular, we should fully expect to see nucleation pheno
ena~characteristic earthquakes! similar to that seen in equi
librium systems.

IX. SUMMARY AND REMARKS
ON STATE-VARIABLE FRICTION

AND NEURAL MODELS

We have discussed a number of models for friction, a
have shown that the statistical mechanics of these mode
amenable to analysis using standard techniques. We h
also shown that CA models can be treated as equilibr
models in the mean-field regime, which constitute the sp
of the models of interest for real elastic systems. Th
mean-field models can be described by a spatially and t
porally coarse grained energy functional that leads to anˆ-
Langevin equation. We also described a model recently
troduced elsewhere@11#, the TDW model, and showed that
Lyapunov potential energy functional could be defined t
plays the role of an equilibrium free energy functional. A
sociated probability distributions, scaling exponents, a
predictions that compare favorably with data were also int

- FIG. 7. Number of simulated events against area of simula
event on a log-log plot.
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duced, derived, and discussed.
One of the questions that has been raised by a variet

authors@17–19,27# is whether simple stick-slip friction, a
used in the CA models discussed in this paper, is a v
physical mechanism for describing frictional sliding. Man
of these authors in fact advocate a slip weakening frict
law, such as the TDW model, or a velocity weakening la
such as those discussed in Refs.@2,18# and @19# ~see, for
example, Eqs.~75! and ~76! below!. However, recent work
by Schmittbuhl, Vilotte, and Roux@72# indicates that a large
class of velocity weakening friction laws iterate to the cla
sical stick-slip friction law under a renormalization grou
rescaling transformation. This result clearly indicates that
model is sufficiently coarse grained spatially, the stick-s
law should be physically justified.

Two final remarks are in order. In the following, a com
parison is provided between our model and another c
monly used friction model, as well as some comments on
possible applicability of traveling density wave models
integrate-and-fire neural models.

State-variable friction. As mentioned briefly in the Intro-
duction, another model that is frequently used to underst
sliding friction is the phenomenological rate and sta
variable law. This friction law has been developed by the
of laboratory experiments generally limited to clean, d
free, smooth rock samples. In this lumped-parameter mo
the spatially averaged friction forces f on a sliding labora-
tory block is represented by the equations

s f5s0
f 1A ln~V/V0!1u, ~73!

du

dt
5

2V

dc
@u1B ln~V/Vc!#, ~74!

wheres0
f , A, B, V0, anddc are constants to be determine

from data. The quantityu(t) is a ‘‘state variable,’’ whose
physical meaning has been variously postulated to be ‘
perity contact time’’@17#, the amplitude@25# of the funda-

FIG. 8. Gutenberg-Richter plot of cumulative number of sim
lated events plotted against event magnitude. Filled circles inc
eventsA.5000, open squares do not.
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mental Fourier component of the slip deficitf, the separa-
tion between the sliding surfaces@46#, as well as other mean
ings ~see the bibliography in Ref.@14#!. In order for insta-
bilities to occur,A2B.0. It should be noted that in the
experiments leading to Eqs.~73! and~74!, the stiffness of the
laboratory apparatus is arranged in such a way that it is v
large compared to the stiffness of the sliding sample. In t
case, and by virtue of the quasistatic nature of the slid
experiments, it is usually assumed that~1! V5ds/dt, where
s is the average slip of the sliding surface,~2! that a steady
state regime is eventually achieved, and~3! thats f5se.

By a suitable redefinition of state variable, Eq.~73! can be
put into the suggestive form

s f5s0
f 1Au85se, ~75!

whereas Eq.~74! can be reduced to

du8

dt
5S 2V

dc
D @u81 ln~V/Vc!

12B/A#, ~76!

where

u85 ln@~V/Vc!f
1/A#. ~77!

Now we show that the TDW model can be put into a for
similar to Eqs.~76! and ~77!. Expanding Eq.~25! about the
mean-field regime, in the presence of appropriate cuto
yields the expression

se5sB2KLf0~ t !. ~78!

Similarly, using the linearized evolution equation forf(t)
corresponding to Eq.~38!, we obtain the equation

df0

dt
52~KL12gck

2!@f01Vt#2h. ~79!

If gc and h are assumed to depend on the sliding veloc
V, there is a similarity between Eqs.~75! and ~78!, and be-
tween Eqs.~79! and~76!, if f0(t) is identified with the state
variableu8(t). There is one major difference, however,
that Eq.~79! predicts a nontrivial dependence on the far fie
displacementdfar5Vt, whereas Eq.~76! does not. It is inter-
esting that recent laboratory experiments@20,21# actually in-
dicate a dependence of friction ondfar as a result of the
inevitable processes of wear that irreversibly deform and
ter the sliding surfaces as slip progresses.

Neural models. An important property of integrate-and
fire neural models is that they possess a periodic limit cy
attractor@5,73,74#. It should be noted that periodic behavio
is sometimes approximately observed in real earthquake
well, such as at Parkfield, California@9#. Under the Itoˆ-
Langevin dynamics~32!, the Lyapunov functionalU@f(t)#
will undergo a ‘‘downhill march’’ on its energy landscape
the zero noise limit. This property ofU@f(t)# is obvious in
light of the definition of the dynamics~34! and~35 !. More-
over, becauseU is bounded from below, it can be show
@5,73# that U@f(t1P)#<U@f(t)#, and the system ap
proaches a periodic limit cycle. This will also be true f
systems with quenched disorder. Systems with these pro
ties can be used to model integrate-and-fire neur

-
e
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@5,73,74#. If f is identified with cellular potential, andV
with injected current divided by cell capacitance@73# for an
integrate-and-fire neuron Eq.~8! can be regarded as an e
plicitly, rather than the usual implicit@5# equation for the
evolution of the cellular potential. Decay of a neuron fro
metastability is then identified with the transmission of
action potential. We suggest that the network learning pr
lem might be made easier for models of this type by the
of the explicit evolution equation.
ev
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