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Driven threshold systems are now used to model sandpiles, earthquakes, magnetic depinning transitions,
integrate-and-fire neural networks, and driven foams. We analyze a physically motivated model which has
many of the same properties as the hard threshold models, but in which all of the nonequilibrium physics is
obtained from a Lyapunov functional. The ideas apply to mean-field systems, and lead to a number of
predictions, including scaling exponents and metastable lifetimes for nucleating droplets. The former predic-
tions are supported, for example, by data observed for earthquake fault systems. An interesting consequence of
the model is that time appears as a scaling field, leading to temporal scaling laws similar to those observed in
nature.[S1063-651X97)09307-0

PACS numbds): 05.40:+]

[. INTRODUCTION are best described as residing near a critical point in the state
space of the system, or as systems that occasionally display
A variety of nonlinear, driven systems have dynamics thanucleation events. The latter are avalanches involving the
have been modeled with thresholds. Common to these moantire system that occur significantly more frequently than
els is a repetitive process in which the force or potential at avould be expected on the basis of the observed frequency of
lattice site is persistently increased by the externally suppliedmall events. Data from laboratof§] and field observations
force, until a sharp threshold is reached when a sudden jum9,10] apparently indicates that both real sandpiles and earth-
to a new state occurs. During the jump, the force is greatlyjuake faults often display phenomena associated with nucle-
reduced, after which the process begins again. Depending ation events, in which the entire sandpile or fault fails fol-
the degree to which each site is coupled to its neighbordpwing a series of smaller events.
other sites will be induced to jump at the same time. Prob- In this work, we present the “traveling density wave”
ably the two most widely known examples are the sandpilé TDW) model[11] that may be useful for understanding the
model [1] of self-organized criticality, and the Burridge- physical processes of driven nonlinear threshold systems.
Knopoff (BK) slider block mode[2] for earthquakes. In the The TDW Lyapunov functional is similar to the density
former, a lattice accumulates particles, or is tilted, until awave Hamiltonia{12,13 used to describe charge and spin
critical slope (threshold is reached at which avalanches density waves. In this model, the system is persistently
(clusters of failed sitesbegin to occur. In the simplest ver- driven to failure by means of external forces, and the sudden
sions of these models, avalanches of all sizes occur, leadirjymp of a site to a new state is a nucleation event. Moreover,
to a family of critical exponents, the mean-field values ofsince the nucleation occurs near the mean-field spinodal,
which[3] have been shown to be identical to those for meanwhich behaves as a line of critical points, a scaling regime is
field percolation(the same as spinodal exponen&imilarly,  observed that has the “magnetic” spinodal scaling expo-
in the slider block modelg2,4], a loader plate increases the nents. The scaling fields for the TDW model t¢time and
stress on a network of coupled sliding blocks until the statiq2) a parameteA involving the wavelength and amplitude of
friction threshold is reached. At that point, one or more ofthe cohesive forces across the sliding surface, and the elastic
the blocks begin to slide, still subject to a dynamical friction constants of the surrounding elastic medium. For example,
stress. Avalanchegclusters of failing blocks of all sizes nucleation event$‘earthquakes’) as well as ordinary criti-
occur, again leading to another family of critical exponents.cal phenomené&‘fault creep”) are predicted, and have been
The basic picture of a persistently driven dynamical sys-seen in the simulations discussed below. “Aftershock” and
tem displaying threshold dynamics is evidently a common‘foreshock” events are predicted, as well as an Omori law
model for a variety of physical systenj®,5—7], including [9] for both aftershocks and foreshocks that has a temporal
magnetic depinning transitio§] and slowly driven foams scaling exponenp=1, the value most often observed in
[7]. Yet a basic question remains as to whether these systemsture,py,~~1.
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To motivate the foundations of the traveling density wavewas also the first model to capture the scaling phenomena
model, which may have general applications to a wide vari-observed during earthquakes. The basic idea is that slider
ety of other systems, we return to the prototypical thresholdlock models represent the kind of microscopic physics that
system of an earthquake fault driven by tectonic plate mowould be found at the smallest scales on a frictional sliding
tion. We discuss the manner in which the TDW model arisesurface. The CA slider block models are distinguished from
in this context, followed by an investigation of its properties.the original massive BK slider block modg2] in that the

position of each block through time is obtained from an up-
Il. MODELS FOR EARTHQUAKES date rule, instead of by solving a setifcoupled differential
AND FRICTIONAL SLIDING equations forN-element models, as is the case in the BK

) ] _ . model. Farther neighbor models can also be implemented to
A central problem in understanding earthquakes lies ingpresent elastic continya1,14,24 using long range cou-

clarifying the physics of the frictional sliding proces_ieg]. pling springs whose spring constants decay with distance
Current modeling approachg®,4,15-19 rely on friction 55 1¢3° An advantage of massless CA models is that the
laws that are of either the cellular automat@A) jump-rule 4y namics of largd\ models can be examined on even mod-
type; the simple BK model with inverse velocity depen- ogt workstations, which can be important when correlation
dence; or the experimentally determined, Dleterlch-RumqengthS are large and finite size effects are important.

(DR) parametrized state-variable model. While the latter is  cg|ular automaton models are “freshman physics” mod-
based on the idea that two surfaces under shearing stress aig for friction that have been widely studied in the literature
never actually stationary, recent experimental d@a.21 14 5 14 25_29 Consider a two-dimensional array Wffric-
raise new questions about the validity and applicability Oftjona| plocks(or lattice sitg with each block connected to its

tEis critilc]:':\l ?ssurfnption. Irt_].s;a]ems clea: from this rrl]ew datanaarest neighbor by coupling springs with spring constant
that real fault surfaces, which are not clean, smooth and dugt " 3nq to a loader plate by a loader spring with spring

free, will not be described by the simplistic rate and State'constantKL. The loader plate translates at velocity in-

variable description. These data indicate_that the experimerb-reasing the force on each sticking block until it slips when
tal surfaces do experience arrest, and in that case the Dffe force(stress exceeds the static friction. In these models,
friction laws predict an infinite and unphysical value of statiC 5 tatic failure threshold ™ is prescribed, along with a re-
friction. Moreover, the DR friction laws are not applicable ¢y a1 stresssR. When the stress on a s}te increases. either
[20,21] throughout the entire sliding regime, the data “pongradually or suddenly, to equal or exceef, a sudden jl;mp
which they are based having been obtained only at low SIidl'n slip occurs that tak,es the stress at thé site down to a re-

ing velocities and over small total slip distances. In fact, a%iqual valueoR. The exact details of the jump process, and

sliding progresses, velocity weakening behavior becomeﬁ/hether it occurs synchronously or asynchronously with the

transformed into velocity strengthening behavior as the Su.r'umps at other sites, is a model-dependent decision. These

faces accqmulate dl.JSt 'ar'1d gouge between .th.em. \./eloc' odels assume a separation of time scales, the time scale for
s’gr_e_ngthenlng behavior is |ncompat|b!e with frictional msta-long term motion being far larger than the time scale on
bilities. On the other hand, the Burridge-Knopoft-Carlson-,, 1, adjustment of the slip state occurs. While the advan-
Langer f(lct|on law was S|mply. as;umgd, as described in Reftage of this friction model is ease of computational imple-
[2] and |t|s obsirvatlolnal rr;otlvatlon IS not clﬁar. More%\/elr'mentation, the disadvantage is that it captures the physics of
It Is not clear what value of mass to use in the BK mo ®Sstick-slip sliding best for disordered microscopic surfaces,

inasmuch as it is not clear what the massive elements aig, o105 considerable latitude in specification of the jump
intended to represent. Finally, the CA friction laws represent . .1 ism

the effects of static and dyn'c_lmic friction by spgcifying 2 More generally, these lattice threshold CA models are
rupture thrgshold, and_a. residual stress at Wh'Ch mOt'Ol?lonequilibrium systems that fluctuate around a time-
ceases. While the CA friction models only approximate maC'averaged steady state. In a sense, these systems are similar to

roscopic friction(see Sec. IX they are better representations equilibrium systems that also fluctuate around the time-

of the processes operating on random disorqle_red SuncaCezi'/erage equilibrium state. A subset of these models are de-
Problems such as these, with all of these friction models

. o ; terministic, and are known to have periodic limit cycles
have preyented Fhe formulatmn ofa umfymg_ aF‘d phys_lqally[zz,zq_ Another class of mode[80-32, also deterministic,
self-co_n5|stent viewpoint of the process of frictional SIIdIr‘g'do not have a limit cycle attractor, but instead fluctuate in a

An important recent developmeft5,22 has shown that |

| P field CA model be d ived b complicated manner about a constant energy. The major fo-
classes of mean-fie MOGEIS can be described by & Sbayg pere js a third and separate class of slider block models
tially and temporally coarse grained field theoretic formula-

. — that have a stochastic dynamics, and in which the blocks are
tion, and that these models can often be treated as equﬂ:{b{n y

rium models. The details of the field theory will be presente ringtlezsz’bgﬂ? ;krl]eaj\lljé?ggsea\rlzlruagdom variables uniformly dis
elsewhere[23]. The fact that mean-field models can be '

treated in a manner similar to equilibrium systems is based

on an extensive series of simulations of mean-field and IV. STOCHASTIC MODELS, MEAN-FIELD,
“mean-field-like” CA models, which we now describe. AND BOLTZMANN STATISTICS

As motivation, consider a typical equilibrium system for
which the total energ¥r~ constant, except for small fluc-

Nearest neighbor CA models are often called slider blockuations, the mean square probability of which decrease in
models(Fig. 1). The first such model was the BK model. It magnitude as 1N, whereN is the number of particlegor

Ill. CELLULAR AUTOMATON SLIDER BLOCK MODELS
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degrees of freedom or mode#$n such a model, the internal si(t+ 1):Si(t)+\](gi)(gi_gr), (4)
energy E; of each independent field variablenolecules,
spins, eto. executes small fluctuations about the time-where ®(x) is a Heaviside step and the failure threshold

averaged mean energy. Assuming that the system obeys thé is spatially dependent. Exampl¢83] of deterministic
postulate of equah priori probability, the method of most jump functionsJ(o;)=As; include

probable distribution§32] can then be used to show that the

expected distribution of block energies is Boltzmann. Divid- Ji=(oi— DKy,
ing the possible energy states infq=1,...,Q} energy ®
bandedE(q) occupied with probabilityP(q), detailed bal- Jzz(UiF_giR)/KT,

ance requires that
WhereaiR is a residual stress antk is the total spring con-
2 P(Eg)=1, stant K=K +2dKc, d is the dimension of spageThis
q expression is valid also for a model with longer range
springs (interactiong, in which each block interacts with
Ng other blocks via springs with spring constaits. Each
block jumps from its current stress at failure to the position
having the specified residual stras3, thus Eqs(4) and(5)
From Eq.(1) and the assumption of equalpriori prob-  are examples of a deterministic rule.
ability it is simple to show that the probability of a state A stochastic jump rule can also be ugdd]. For these
P(Eq)>* exp[—E4/Tsgl, the Boltzmann distribution, where models, the jump is given by
Sqg is the lattice average energy per degree of freef@ah
(Tsg is the mean energy, the “temperatupe” Js=J1(1—-Wp), (6)
We apply these ideas to the slider block model. Consider ) )
the Hamiltonian[15] for models with arbitrary range inter- WhereW is a (constant width chosen from &W=1, and

actions having coupling springs of fixed strenéth p is a uniformly distributed random number @re[0,1].
In the models described in the following, it will be as-

1 , 1 ) sumed thais = oF are constant, and®=oR are constant.
HSB:EZ Kil¢i—Vr] +§ch:2im [¢i=#i]°- (@ Noise in these models arises both from the initial conditions
and from randomness in the jump describedWy which
The sum ovei is over all sites in the lattice, and the sum represents random microscopic processes associated with
over j is over all interacting blocks within the range of in- Wear and spatially inhomogeneous properties of the sliding
teractionR but excluding sitei. The time 7 represents a surface. Thus, in the limit o=0, the parameters that
loading time scale; it must be present inasmuch as loadinghould completely determine model behavior &ie, Kc,
due to the far field velocity must occur prior to failure. The o, of, andWw.
order parameter field is the slip defici;(t)=s;(t)—Vt, To understand the results of the simulations carried out
si(t) is the slip of blocki at timet. The value ofHgg for a  below, we observe that the slip defigbt(t) of a block fluc-
particular configuration ¢;] is Esgg=Hgg(¢). The force tuates around a time-averaged valbie
(stres$ o on blocki is

> P(Eq)Eq=Er~const. (1)
q

1T
b==| (vt @
ospi=—IHspl I =— KL[¢i—vT1+ch§mt[¢j—¢i] : Tfo

(3)  The fluctuating part;(t) is then defined by

Expression(2) can be formally obtained15] from the ¢-(t)=$+ 4. @)
expression for the elastic strain energy of a fault embedded ' v
within an elastic continuum, in the presence of short range=or convenience in analyzing data obtained in simulations

and long range cutoffs, by the use of a gradient expansionsing the jump(6), we normalize the fluctuatior;(t) to
For the nearest neighbor models, the spring constén®nd  ynity by defining the variance [2]:

K¢ are then related respectively to the Oth and 2nd moments
of the stress Green'’s function. For the moment, we specialize , 1 (T )
to models withV=0, in which only one avalanche occurs W= Tjo [Zi(t)]“dt. 9
following each loader plate update. Slider block models with
nonzeroV are discussed further in RgfL4]. Then
A rule to generate the dynamics must be specified. The
simplest example is the modified Mohr-Coulomb friction
law, in which each block has a prescribed static failure Zi'(t)Eafi(t)- (10
thresholds! and a residual stress at which the block sticks '
aiR. The dynamics are generated by a jump rule giving the Considering models with/—0, the Hamiltonian2) can
position of the block as a function of the state of stress on th@ow be written as
block. Jump rules such as these can be either deterministic or
stochastic. The basic jump rule is Heg=Hy+H;+H’, (11
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where the various terms are defined as For mean-field slider block models in two dimensions
[15], the distribution of energies is notp(E,)
o exp[—Eq/Tsg], but p(Eq) xEy exp[—E,/Tsg]. Itis clear
that the energ¥ of a block is the sum of energies contained
within all the springs connected to that blodee Eq.(2)].
_ 1 - The energy in theith spring is itself proportional to the
Hy=2> wi{ Kigidi + EKC‘E Ly — & 15— ¢i]}, square of a stochastic variabfg(t), which is maintained in
' J=mt (12) a random state as a result of the random jump amplitude
W. ThusE is proportional to the sum of the squares of a set
1 1 of random variables. Standard results from probability theory
H’EEZ wlz( KL(gi’)2+§KC_Z [yijgj’—gi’]zl, [34] indicate that with suitable normalization of the random
! J=int variables, we should expe@ to be distributed with ay

1 —, 1 -
Ho=52 {KL<¢i>2+§KcZ [¢;—¢>i12},
j=int

and where square distribution withv degrees of freedom, i.ep(E)
XEV/271 exp[—E/TSB].
For large values oK-/K,, one would expect that the
) (13 coupling springs would store most of the energy. For the
wi nearest neighbor models studied here, this implies that
: - v=4, andp(E)«E exp[—E/Tgg]. However, this reasoning
dis\tlxguggﬁugl::gtsep%r:g?ne;}[\éetrﬁgeeiesrt;;zt;sznolf);héqﬂe_)nerggeems inconsistent with the results obtained by the method of
i ] il ) ) most probable distributions32], because the number of de-
and(12). Taking the time averagésg of Hsg in Eq. (11), it grees of freedom for a gas of particles is effectively infinite.
can be observed that One would not, therefore, expect to obtain the simple result
— P(E)>= exp[—E/Tsg].
Ho=Ho, A different, and perhaps more consistent, line of reason-
ing is based on the fact that the fractal dimensidn for
H.=0, (14)  mean-field system35] is D;=4. If the number of degrees
L of freedomv for each blockthe effective dimensioris then
H'+#0. assumed to bev=D;, one obtains the observed result.
Moreover, for the simple case derived using the two con-
Hy is a constantid; executes small fluctuations about 0, andstraints of Eq.(1), v is D=4 minus the two constraints of
H' fluctuates about some nonzero value. The fluctuations igq. (1). Hence v=D;—2=2 degrees of freedom, and
H, will be expected to have a Gaussian distribution sincep(E)= exp[—E/Tsg] as found from the method of most
H, is clearly a linear sum of random variablgs. probable distributions. Although preliminary resul22,23
Since we are interested in the nonzero time-averaged oceem to validate this approach, we are now in the process of
cupating numbers, for the various energy bands centered more extensive testing using simulations of models with long
onE,, we focus attention on the last of E4$2). We there-  range springs.
fore define(see below To determine whether these predictions of Boltzmann sta-
tistics are valid, the energies of blocks in a nearest neighbor
slider block simulation having random jumps were measured
[15]. For an unbounded system, a normalized energy func-
tional H”(¢{;) can be written in terms of the normalized slip
By comparison of Eq(15) with Egs.(1) and(2), we surmise  deficit {; on theith block as
that the numben, of blocks that occupy energy level, L L
should display Boltzmann statistics, assuming that all con- v )2 b2
figurations have equal priori probability. H _EZ Kigit+ EKCJ.;m L& —&i1% (16)
We expect that the property of microscopic chd8g]
will exist in the slider block models when the interaction  Measuring the energies was accomplished by defining
between neighboring blocks is large enough to self-organiz&0 000 energy bands centered on eacl,,
the blocks against the competing stochastic noise from thpg=1, ...,10 00Q. Upon termination of all block instabili-
block jumps. In turn, some level of stochastic noise must beies following a loader plate update, the number of block
present, particularly for small values &f-, to prevent the energies falling into each narrow energy band are counted.
blocks from phase locking into a limit cycl@8]. In other  Defining
words, the random jump function introduces a stochastic
noise, allowing the system to explore its phase space effec- P(Eq)=ng/N 17)
tively. SinceR=(Kc/K_)¥? is a measure of the range of
interaction, models with large values Bf are expected to
display mean-field characteristics. Mean-field models with L(E
noise level are more likely to demonstrate Boltzmann statis2”°V€
tics, and to have decreasing amplitude fluctuations at all but E
the largest wavelengths. Therefore, the assumption P(Eq) = Tq exd —Eq/Tsal, (18
2 4NqEq~ const is more likely to be valid. T

wj
YijT

H'=2Tgg=2, nE,. (15)
q

as the probability density function, and assuming that the
¢) are normalized Boltzmann functions as described
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FIG. 1. Cumulative distribution function of block energigg

from our simulation(dot9 using Eqs(19) and(20). Model param- . )
eters for the plot ard, =1, Ko— 25, 0" =35, o*=—0.35, and [P.(E),P,(E)], together with I4P,/P,}, plotted againsE. Both

W-01. The mean scaled energy is 534, or equvalentygh AT B8 SOCTC T R E TS T e & pure oz
Tsg=2.67. The dashed line between the dots is B using y P ' gap

Tsg=2.67 as the decay length. This is a mean-field model, anczginnlg?stgé‘ ;ﬁﬁ;E(li\Z;_blr:ﬁE.sounaraessemllog plot, this func-
illustrates the quality of fit between simulation data and theory. P 9 y q '

FIG. 2. Probability density functions for two mean-field models

ture Tsg and the model parameteks , K, of, and o®.
Since the energy is stored in the springs, the energy should
be related to a quantity such as(spring constantx (mea-
sure of jump sizg[2]. Thus we search for a relation such as

the expected normalized cumulative distribution function
(CDF) F(E’) is obtained from

EI
F(E’)=j E’ exp[—E’]dE’
0 Tspx EX[K1J?], (2D
=1-(1+E')exd—E'], E'=E/Tg. (19 whereEX| ] is the expectation operator arising from the sto-
. . chastic nature of the random variahldsee Eq(6)]. Using
The quantityTgg can be related to the measured time anqu. (6), the expectatiofEx[K-J?] is easily shown to be
lattice average of the energyt’(t), which we denote as ’
(H"). Using Eq.(18), we obtain the time-average energy per
block Tgg as e

Tsg=(1/2(H"). (20)

Equations(18)—(20) represent a prediction, with no free pa- ok y
rameters, of the energy distribution obtained from simulation
data.

It was emphasized in Refl1] that Boltzmann statistics
apply only to mean-field models. An example of a mean-
field Boltzmann model is given in Fig. 1, which visually
shows the quality of the fit between the numerically mea-
sured energies for the normalized energy functid#aland
the predicted curve. The CDF prediction has a decay length

that is obtained by measuring (1{®)"). That value is then
used together with Eq(19) in evaluating the CDF, the /
dashed curve. The dashed, theoretical CDF curve is almost o
indistinguishable from the experimentally determined CDF it o/
measured from the simulatioridots.
Figure 2 shows a comparison between two mean-field
models with different model parameters, thus different tem- S
peraturesl sg; and Tgp,. In that figure, the logarithm of the 10
ratio P, /P, is plotted against energlf, where theP’s are Average Energy
the Boltzmann functions in Eq18). Thus on a semilog plot,
In (P]_/Pz) should be a linear function &, with Slope deter- FIG. 3. Average energy 'QSB:<W> of models against the
mined by 1T gg;— 1/Tgg,. Figure 2 confirms this result. quantity given on the right side of E(R4). Dashed line has a slope
Figure 3 illustrates the relationship between the temperaef 1.

0.14 Kpj* (1-w+w?/3)

10!
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Ex/K-J21=ExX[K-J2(1—Wp)21=K~-J2[1— W+ W2 mann energy distribution. Using this as the starting point,
[K7J"1=EX Kl PI1=Kedil s (%2) Ref.[22] has shown how to construct a spatially and tempo-
rally coarse grained Tthangevin equation for a mean-field

with CA model. The existence of such an-ltangevin equation
in turn implies the existence of a functional potential for the
oF—oR dynamics. We are therefore motivated to develop a formal-
Jo= Ky 23 ism, based both upon theoretical ideas as well as upon labo-

ratory and field datd437—47, to describe the threshold dy-
namics of these driven nonlinear systems. We will again
couch the discussion in terms of a model for earthquakes,
Szillthough the final result clearly has a more widespread ap-
s‘plicability.

We begin by considering two elastic media in contact at a
surface upon which slig(x,t) can occur in response to ap-
plied shear stress. Sliding is drive#3] by the imposition of
a spatially constant displacemesator stresses g applied at
distances remote from the slip surface. For such a system, the
elastic stres&®(x,t) on the slip surface atx(t) can be writ-

0 within _small error. The factor of 0.07 represents the,, ;"o g of(1) a stress Green’s functiaispatial interac-
Boltzmann constant” for this class of models, and is evi- . . : n.
tion), written schematically a3 (x—x'); (2) the externally

dently model-class dependent. The mean-field region is the_ ' . -

| : : dpplied shear stressogz, and (3) the slip deficit

ow energy region at the lower left corner of the figure. It can¢:S(X -s

be seen that Eq24) provides a good representation of the ' B

average energy of the model, even for non-mean-field mod-

els (upper right portion of the figuje ae(x,t)=f T(x—x")p(x",1)d*>X' +op. (25
The results obtained here depend only on two conditions:

(1) the system executes small fluctuations around a state fote that the elastic stress is a functional daf which we

fixed internal energy; an®) that e_nough noise is present to yenote asr[ ¢], and that we consider one side of the sur-

allow the system to fully explore its phase space. It can alsgy.e “fixed,” with a coordinate systenx attached to the

be shown that a separate condition requires that the rate Of‘noving” side.

forcing be low[22]. Because this line of reasoning does not  There js also a frictional stress on the surface resisting

depend on the massless nature of the slider blocks, we expegiy |n formulating the general characteristics of the friction,
that similar results will be observed in some classes of masye refer to the extensive literatuf87—43 on macroscopic
sive slider block simulations as well. Since the noise amplisyiction and wear of solids, particularly the extensive compi-
tude required to generate the.BoIt_zmann distribution dei4tion of data described in Refi87] and[38]. We note that
creases as the mean-field regime is approached, we algo 4rises from the cohesion between the sliding surfaces, and

predict that the amplitude of the external noise needed i@ the contact between irregular surfaces will vary as slid-
produce the Boltzmann distribution should be vamshlnglying progresses. Following Ref38], we therefore take at
small in the mean-field limit. It is therefore likely that Bolt- -1 |ocation to be a functional ’

zmann fluctuations will be important in nature, and that these

In Fig. 3, we plot the average energy¥g=(H'), against
the right hand side of Eq22) multiplied by the constant
number 0.14. The latter is obtained by requiring that the be
fitting line have a slope of 1, and that the best fit line pas
through the origin. The “temperature” or energy of slider
block models is thus given by

Tes~0.07KJ3(1— W+ 3 W?)] (24)

fluctuations may be the origin of extended spatial correla- o' =c'(s(x,t);c;r). (26)
tions observed in real earthquake fault systéses, for ex-
ample, Ref[36]). In Eq. (26), s(x,t) is the total slip experienced by the point at
coordinatex at timet, ¢ represents a set of parameters de-
V. TRAVELING DENSITY WAVE MODEL scribing the cohesion between the surfaces, rarepresents

a set of random parameters. Both of the parameter sets rep-

To our knowledge, all models for earthquakes and fric-resented byc andr are in general sité¢location and time
tional sliding that have been examined to date begin by posjependent. Time dependence describes irreversible wearing
tulating a dynamical equation to describe the evolution of theyf the surface, i.e., random alteration of surface properties as
system. However, to begin with an assumption of a Newtong result of microscopic surface damage during sliding. Note
ian balance of forces for such a dissipative system leaves Ugat o' is a function of space and time through the space and
with questions, such &d) how to understand the energetics time dependence &, ¢, andr. Also, ¢ should depend ex-
of the jump transitions an(®) the physical origin of scaling pjicitly on the normal stressry pushing the surfaces into
in these models, as well as the origin and identity of the;gntact.
scaling fields. An intuitively more appealing approach would  Now we consider a state of deformation of the system
base the physics on the construction of a functional potentialsolig+surface induced by a far field displacemes. The

with the resulting force balance equations arising as an Itoyajance of force§43,44 on the surface requires that
Langevin equation obtained from variation of the functional

potential. This idea is the basis of the traveling density wave o [pl=c[p+sg;cir] (27
model.

Support for this approach arises from the result describedsing the definition oip. We are interested here in models
above that mean-field CA models for friction have a Boltz-with og=0, and in which the boundaries are translating uni-
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formly, so thatsg=Vt, whereV is the velocity of the “mov- Now suppose that the system resides in a nonminimal
ing” side with respect to the “fixed” side. Equatiof27) is  potential energy state that does not satisfy Bf). It is
then reasonable to assume that the fault system evolves persis-
‘ tently toward minimum potential energy, and thus greater
o[ pl=0'[p+Vi]. (28 stability
We remark that Eq(28) has a very simple interpretation. SU
The instantaneous balance of forces at asitan be viewed oU= 5¢(5—¢) <0. (39

in the (o,¢) plane as the intersection of a fixed curve
o [4] with a leftward moving (traveling wave

&'[6+Vt]. This observation motivates the TDW name for Equation(34) then implies that to first order iA¢, the evo-

lution of the system in the presence of noise is obtained by

the model. ; A : ;
The existence of a functional potentid[ ¢], which fol- solving the lteLangevin equation
lows from prior result§22] is equivalent to the assumption i SU
that Eq.(28) is the Euler-Lagrange equation arising from that —=-T 56 + 7(x,t). (35
potential[43,44]. We therefore define the potentid| ¢ ] at ¢
U[¢]=E[d]— S d+5g, 0], (299  The noise is assumed to fdecorrelated
so that Eq(28) arises fromU[ ¢] by functional differentia- (n(x.H) (X' t'))y=B~8(t—t")8(x—x"),  (36)
tion
and B is a constant inverse noise amplitude.
ouU To explore the consequences of these ideas, suppose that
5_¢:O- (30) o' is dominated by only one of the Fourier terms for some

wave numbernc
U is a Lyapunov functional that plays a role similar to an
equilibrium “free energy functional.”
Construction ofU proceeds by taking proper account of
both the elastic and the cohesive forces acting across the
sliding surface. It is straightforward5,43,44 to show that

Utol= | [ 1= 1T x) g0 a0 0]

— 27, co§ k] p(x,t) +Vt+el]+he(x,t)}d?x.

the “elastic energy”E[ ¢] exists and has the form (37
_ 1 o 420 Both 2y, and h depend in general on the normal stress
E[d’]_J J{ 2 [T(x=x") (x,) (X', )d*x’] on, Which in turn depend§46] on V. Using Eq.(35), the
corresponding ltd_angevin equation is
+ ogd(x,t)}d?x. (31) g ’ ? |
- . £ . . . dp(x,t) ]
S is likewise related tar' by functional differentiation - =T f T(x=Xx") (X' ,1)d>X" = 2y.k Sin{ k p(X,t)
( 0S 5
=5 (32 +Vt+s(x,t)}—h] (%), 38)

The functional§[ ¢+sg,¢] defines the energy associated

with the cohesive forces acting on the surfjé4]. Since the searching for spatially uniform solutionsy(t) to Eq. (30)

cohesive forcer' is by assumption bounded and continuous’ _: . z _ . g
on the interval (- «,x), the Fourier expansion theorgdb] Esﬁrclﬁg ]Eg'(37)’ with =0 ande =0. The functional density
oL %0

states thav' has a cosine series representation in the vari-
able (¢+sg). Using expansion parametess,, «,, and o 2
h=A,, S ¢+sg,¢] can then be obtained by functional in- Uo[ bol = 2 KLpg—2c Cogk( o+ VD}+hepo, (39
tegration ofo

The “thermodynamics” of this model are obtained by

where K, >0 is minus the integral off(r). The Euler-
Lagrange equation corresponding to the poteri88) is

S[¢+SBI¢]ZJ |:2 AI"I COqKn(¢(X1t)+SB+8n)}

" KLpo=—2yck si{x(do+V)}—h. (40)
d?x. (33)  Clearly if k andy, are smallug[ ¢] is concave up, and has
only a single(globa) minimum. On the other hand, i, or
x are sufficiently largeug[ ¢p,] may have more than one
éninimum, with all but the lowest energy state being meta-
stable. More than one minimum are possible when

—ho(x,t)

The parameter®\,, x,, €5, andh describe the cohesive

(" ¢”) properties of the frictional forces. These parameter
can also have a random péttr” ) associated with processes
of “wearing” on the surface, i.e., general time dependent 2
changes in cohesion associated with the accumulation of ir- B
reversible surface damage. ddg

Ho =K +27y.«? cog k( o+ Vt)} (41)
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has at least one zero. Metastability can only occur if thefield displacemenVt, regardless of the presence of fluctua-

parametetA > A =1, where tions (Fig. 4 botton). In that case, no metastability is pos-
sible.
A=2yor2IK, . (42) In addition to A — A.), time “t” can also be regarded as

a scaling field for the line of critical points defining the spin-
odal. It can be observed from Fig. 4 that when the system is

As will be clear from the discussion belowA (- A.) can be N @ metastable energy state higher than the global minimum,
regarded as a scaling field for this potential. Qualitatively,the passage of time drives down the height of the energy
A can be interpreted as indicating the number of localoarrier toward the spinodal, and the system nucleates into the
minima. An immediate prediction of the theory is that as thelower energy state. This process recurs with period
stiffness of the surrounding elastic mediuty is increased, P=27/(«xV) so that the spinodal occurs at times
a transition should occur, from the appearance of suddek™ tsptnP,n= integer.

unstable jumpgdecay from metastabilijy to stable sliding

as A decreases. Such a transition is commonly observed VI. EXPANSION ABOUT THE SPINODAL

[18,20,37,38,4yin laboratory experiments, The equation that describes the nucleation process is iden
The TDW model represented by E489) and (40) has tical to that obtained in studies of spinodal nucleatidg],

the simple geometrical interpretation shown in Fig. 4. The, ' , . i
intersection pointkp* between the fixed curve and the left- but where the scglmg f.|eld. is proportional - to
ward traveling wave is time dependegt® slowly becomes dt=(tsp=t)mod(P). This equation is

more negativestrain accumulationuntil a point is reached

at which ¢* increases more rapidly in a positive direction —KcV2y+ K Vot— ay?=0. 43
(slip eveny. If the cohesion varies sufficiently in space or in

amplitude, leading to\ > 1, unstable slip can occur at fixed In Eq. (43), ¥(x,t) is the fluctuation of¢(x,t) about the
far field displacement in response to the influence of fluctuaspinodal value, an&K: and « are nonzero, positive con-
tions (Fig. 4 top. One of these events corresponds to decaytants.

from the metastable well. Otherwise, <1, the surface To derive this result, we begin by considering a model in
slips in a stable manner only in response to increasing fawhich long spatial wavelength fluctuations are present. In
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that case, the fieldb= ¢(x,t) depends on position, and the

301

Substitution of Eq.(52) into Eq. (490 and expanding

Lyapunov functional density, is modified by the presence Yields the equation

of a termK |V ¢|?

U’[¢]=f f{%[KL¢2+KC|V¢|2]

—27y: cog k{p+Vit]+ho}. (49
The corresponding Euler-Lagrange equation is
KLp—KcV2h+2y.k sinfk(p+V)}+h=0. (45

In Egs.(44) and(45), the constanK is proportional to the
second moment of the stress Green’s funcfign). Denot-

ing the spatially constant value ¢f, at the spinodatgp by

®(tsp, we expand about the spinodal by writing

¢(X,t):¢)(tsp)+l/l(x,t), (46)

t:tsp_(st,

where|#(x,t)|<|®|, and kVt<27. Note that the spatial

average( (x,tgp) ) of ¢(x,tgp) must vanish at the spinodal,

which from Eq.(43) implies thaty(x,tgp) must vanish iden-
tically. Therefore, we expect that

(X, t)oc bt (47)

where the exponent>0.
The first step in obtaining Eq43) is to solve the pair of
equations defining the spinodal to obtain the value® @nd

tsp

KL(D+2’)/CK S|n{K(CD+VtSP)}+h:0, (48)

K, +27y:x% cod k(P +Vigp}=0. (49

The second step is to substitute the expressid@sinto Eq.
(45)

K{®+ ¢} — K V24 2y.k Sin{k(P+ g+ Vigp— Vt)}

+h=0. (50)
The third term can be written as
sin{k(®+ y+VitgptVét)}
= sin{k(P +Vtgp} codk(p—Vét)}
+ cog k(D +Vigp} sin{x(y—Vét)}. (51

Using the fact thaty and 6t are small, we approximate the

right hand side of Eq(51) as
Sin{ (@ + Visp) [ 1— (<%/2){ =V 5t}7]

+ cod k(D + Vigp Hr(p—Vot)}. (52

[K D+ 2y.k si{k(P+Vigp}+h]— K V2
— YK +27y:k?% co k(P +Vigp}]
—2y.k?Vét{cod k(P + Vigp) |}
— k[P — PV St + (Vt)?} sinlk(P+Vigp}=0. (53

The first and third terms, in the square brackets of (68),

are identically zero, by virtue of Eq$48) and (49). Using
Eq. (49) to rewrite the term proportional tét, the remaining
nonzero parts of Eq53) are

—KcV2+ K Vot — ye 32— YV ot + (V6t)?}

X sin{ k(P + Vigp) } =0. (54

Near the spinodal we search for scaling solutions of(&4),
which in addition to Eq(47) implies that spatial coordinates
X vary significantly on a spatigkorrelation) length scalet

Eoc S5, (55
If Egs. (47) and(55) are inserted into E(54), it can be seen
that Eq.(43) is obtained self-consistently, with=1/2 and

s=—1/4, and with all other terms being of higher order in
6t and therefore negligible as—tgp. Thus the solution
P(x,1)~ (K V) Y2y (|x|/€), where the correlation length
£~ (K Vét)~ Y and y is nonzero and bounded &t tgp.

This is precisely the kind of low-amplitude, large spatial-
extent solution that has been observed in recent field data
[10]. The constant « in Eq. (43 is
a=y3sin{k(®+Visp)}, which is positive and does not
vanish at the spinodal. The latter can be seen by making use
of Egs.(48) and(49).

VII. IMPLICATIONS OF TDW MODELS FOR SCALING

Because Eq(43) has been extensively studied in the lit-
erature in other problemi35,48, a number of results are
immediately available, and predictions can be made. For ex-
ample, the frequency of spinodal fluctuatiomgA) of area
A, which are realized here as clusters of failed sites, is given
by the Fisher-Stauffer relatiga9]

n(A,st)= To exp{ — k[ K Vat]YosAl (56)
y A§ L .

The parametek is a constant determined by fitting the data.
The exponentry is the surface exponent, and the exponent
{ is either{=7—1 or (=, in terms of the Fisher-Stauffer
exponen{49] 7. The relation= 7 characterizes fluctuations
(earthquakes about the spinodal, whereas the relation
{=17—1 describes the frequency of “arrested” nucleation
events(mainshocks[22,23.

Formally, one can also expand about the spinodal for time
intervals followingtsp. Then instead of Eq(46), time is
expressed as
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t:&_tsp. (57)

The entire development of the preceding section follows

through as above, witldt replaced by— 6t in the spinodal
equation(38) and in the Fisher-Stauffer relatidb6).
However, the validity of expanding about the spinodal for

t>tgp can be questioned on physical grounds. In particular,

the applicability of the Fisher-Stauffer relatiqb6) is not

clear, since it was originally proposed to describe fluctua-

tions in systems residing at local miningaquilibrium and
metastable equilibriupn For t>tgp, the metastable mini-
mum no longer exists. However, it will be showsee dis-

cussion belowthat the Fisher-Stauffer relation can be used
to obtain an Omori-type aftershock decay relation for fore-

shocks. It is therefore tempting to propose the hypothesi
that Eq.(56) also describes the fluctuations for times imme-
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diately after the spinodal as well, based on the fact that Eq.

(57) leads to the same kind of equation as ER), but with

St redefined. Note that evidence for the existence of Fisher-

Stauffer scaling in the unstable region has been found ind

e-

FIG. 5. Frequency of aftershocks as a function of time for the
June 28, 1992 Landers earthquake.

pendently in simulations of systems undergoing spinodal de-

composition[50,51] for short time intervals following the
guench.

K

Nas= T AL OP" (62

We can obtain values for all the scaling exponents, and

from these predict a range for the Gutenberg-Richtealue,

by making use of standard scaling relations known for sys
tems with two scaling fields. We define two additional expo-
nentsy and B for the order parametaf(x,t) and the sus-
ceptibility x(x,t) of #(x,t) to small changes in the scaling
field [K Vét]

P(x, 1)~ (K VOO YA([x]1 &) =[K Vat]e,  (59)
G4(x.1) w[K Vo] 7. (59

XU Gcvan

From these definitions3=1/2, andy=1/2, and using the
scaling relation$49]

T—2 _

] (60)
3—7_

o =% (61)

we find 7=5/2, 0s=1, i.e., the “magnetic” values ofr,
os. We now consider two problemgl) Omori's law and(2)
the Gutenberg-Richtdr value.

Here ng is the rate of aftershock occurreneceandK are
constantsAteq=t—ty is the time interval since the main-
shock, andg is an exponent usually found from observations
[9,52,53 to bep~1. Equation(62) is essentially an inverse
time law modified to account for the fact that the rate of
aftershock occurrence remains finite at times just after the
mainshock. The validity of Eq(62) is illustrated in Fig. 5,
which is a log-log plot of frequency of all aftershocks against
time following the June 28, 1992 Landers earthquake. The
temporal decay of activity fits a line with a slopepf1 as
illustrated.

Recently it has been realized that the increase in the rate
of foreshocksny prior to the mainshock follows the same
form [54,59 of law as Eq.(61), with Ate, replaced by
—Atgq, and with an exponernp’. Moreover, it is also ob-
served thatp’=p~1, although the constants andc de-
pend on the individual foreshock or aftershock sequence.

Using our results, we can obtain a prediction for the form
of an Omori’s rate law, while remembering the caveats from
discussion just below E@57). We first identify the observa-
tionally defined intervalAt,=t—t.g since the mainshock
with the time interval since the spinod@t which scaling is
observegl thus At.~— dt. Consider first the problem of
foreshocks, in whichAt, is replaced by—Atg,. To calcu-

Omori's law. The rate at which the number of aftershockslate the frequency of events at tind in terms of the fre-
decay following a major earthquake obeys a relationship firsquency at timest=0, we use the event frequency relation
observed by Omori following the 1891 Nobi, Japan, earth{56) to integrate over a band of events lying between area
quake (Amin vAmax)

Amaxn(A,(st)

fAmin

EXF[ - k( KLV&) l/USAmin] - exp: - k[ KLV&] l/USAmax]
K[K_Vét]Yos

n(A0

|

(63
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We see that for time$t>0, the frequency varies with time Gutenberg-Richter b valuéThe Gutenberg-Richter rela-
according to §t) Vs, modified by an exponential decay. tion Ngg(m) is technically the function that describes the tail
Since 0s=1, an Omorip’ value of p'=1/o,=1 is pre- of a cumulative distribution. Using parametefb,a},
dicted, in agreement with observatif®52]. Calculation of Ngg(m) is the cumulative frequency of events with magni-
the aftershock rate is carried out in the same way, with tude larger than some value

replaced by —é6t. The value of p is the same, and

p=p’'=1lo,=1 is predicted, in agreement with observa- INNggr(mM)=—bm+a. (66)

tions of real fault systems. i - .
Integrating over all events up to the size of the main-Observations indicate that~1, but this simple statement

shock, one finds a foreshocftershock frequency obscures the fact that observed valuesbofan vary from
roughly 0.6 up to Zsee discussion belgwTheb value can

1—exd —k(K Vét)YosA ] be related to, but is not the same as, the parameter in the
Nio( 81) =Nio( 0) KK Vot - (64 relation between frequency and radiated endtgy(see, for

example, Ref[52] for detailg. The latter has sometimes

This relationship behaves asymptotically asstifs for been quoted in the nonseismological literature as the *
“large” ot, where the approach to the asymptotic form isvalue,” when in fact it is not. A careful distinction should be
controlled by the size of\,,. the mainshock area. Again made between the total energy Idst, (as in a sandpile
p’=p=1/o.=1 is found. Recall that Eq(64), which was avalanchg and the radiated enerdy.

obtained from Eq(56), is valid only for time intervals so ~ We can use the Fisher-Stauffer relatis6) to obtain a
small thatxVst<2. Since 2/« is the nominal slip dis- scaling relationship fob in terms of{ and another exponent
tance in the earthquakem2(kV)= T e, WhereT e is the  C, which defines the scale dependence of the seismic moment
nominal recurrence time for the largest earthquakes. Thus tH¥o on the event areA

condition for smallét reduces tost<<T,.. Observations of
real earthquakel®,56,57 indicate that frequency of seismic
activity (aftershocks has the characteristie- 1/5tP scaling
form only when this condition is satisfied. Finally, typical
values ofA,, are extremely large, of the order of ®Len? 2
for a magnitude 6 earthquake. Thus the approach to the m= -
asymptotic form 18tY“s is expected to be fast compared to 3
the total timest™® over which Eq.(64) is valid, as observed

M o AC. (67)

Together with the moment-magnitude relati@2)]:
InM,—10.7, (68)

we find by integrating Eq(56) over area$A,«), using Egs.

[9]. ;

On the basis of empirical observations, a stretched expo(-67) and(68), and equating powers of the area that
nential form for foreshock buildup and aftershock decay very 3(¢-1)
similar to Eq.(63) has been suggest¢f6,57] that fits seis- b= T (69

micity data as well or better than the classical Omori law.

The corresponding cumulative frequency of events on th‘??ecent workg63—69 suggests that lies between 1 and

itﬂterWi' (O'E_c?t)’ IWhi;thf denote bl is easily found for - 5/, { can range from 3/2-5/2, depending on whether main-
e expected value &(= shocks(arrested nucleation everj2,23) or foreshocks and
aftershocks(spinodal fluctuationg22,23) are of interest.

Nt ) = lim (n“’t(o)){m(_ Stle)—Tinde,— 6t)}. Thusb is predicted to range fror(0.5, 2.25. Observed val-
e—o | KKV ues[65,66,6§8 are typically in the range from 0.8-2.1, al-

(65  though declustered valugs5] can be as low as 0.6, whereas
swarms of events can sometimes hdwveralues[9] up to
perhaps as large as 2. The predictions of our theory thus
bracket the range of the observed values.

Herel;, is the incompletey function[58]. It can easily be
seen thalN(6t) has the well defined limiN;y,(0)=0.
Equationd63)—(65) for aftershocks and their counterparts
for foreshocks also predict that the rate of large aftershocks
decays more rapidly than smaller events-aét increases.
Similarly, the rates of large foreshocks increase more rapidly We carried out a series of simulations to check our re-
than do the rates of small eventsétsdecreases. To test this sults, and we give an example that lends support to the re-
prediction, we plotted the cumulative distribution for sults we found from analyzing E¢69). We solved the evo-
Landers aftershocks with time, for groups of equal numbersution equation(38) using a modified Newton’s methdé1]
of events(Fig. 6). It can be seen from the data that the largerincluding noise terms, on a 1680L00 lattice of sites using an
aftershocks do relax much more rapidly with time than theinteraction given byKc/r3, with each block connected to
smaller events, although the effect is overpredicted by Eql3 sites. The quantitieg, and«x were held fixed, producing
(63). We point out that modifications of inverse power lawsa simple time dependent potential. Note that the cohesive
in 8t have been shown to be useful in earthquake forecastinfprces are not scale independent as perhaps is implied by the
[59,60. These authors show that in some cases, leading opbservations of fractal topography on fault surfa¢as].
der corrections to the value take the form of complex ex- Sources of noise in the simulation were provided both from
ponents. We will address these ideas in a future publicationrandom phases that changed after each site decayed from
[61]. the local minimum, as well as noisginherent in the modi-

Simulations
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bins clearly relax the most rapidly, as predicted by &7).
fied Newton method used for solving the equations. Figure 7 T~ exp{Ke(K Vot 7D
shows a plot of frequency of occurrence against event size.
There are three regions apparent on the plot. The region tﬁ
the left of the local maximum neak= 100, which is deter-
mined by the noise amplitude=0.01, is noise dominated.
The region betwee =100 andA~5000 is the scaling re-
gion that represents spinodal fluctuations, and has a slope
{=7=25 as predicted. The regioA>4000 represents

nucleation events, in which large sections of the lattice decay Referring back to the discussion associated with Egs.

frorlg the née_tastable wlell_3|mgltanet§>uslyh_ h lot for th (6), it is now clear that the existence of Boltzmann-type dis-
samlgusri?n uléiioanguan;uir?tll\:/% YUtesrr:oG\}/\:i%]-g Ifhéeglgto\tvi;r ;n%tributions is associated with the presence of long range inter-
. . O _“actions and the mean-field regime. Note thaf Iiteractions
W'thOUt nuclea'uor_l events included. Th_e slope of the S(.:a“ng/vith physical cutoffs at both small and large wavelengths are
region representing spmo_dal fluctuatllons bs-2.2. This the physics by which defects in elastic solids interact. We
value can be checked against B69) using{=7=2.5 and 0 efore expect that the results of these mean-field theories
c~.1, giving a plred|cted value fdy=2.25. The va_ﬂue:~; will be applicable to earthquake fault systems. More impor-
arises for our simple mode€B8) becausey,. is neither site tantly, it can now be seen that the TDW model leads to
dependent nor self-similar. It sh_ould be pointed out that thesﬁwethéds of analysis for earthquake faults that are often iso-
vglues_forb (and p) were.o.btamed for a model of only a morphic to those used in equilibrium statistical mechanics. In
single isolated fault. The finite extent of real fault Segmemsparticular, we should fully expect to see nucleation phenom-

and the relative numbers O.f smal! faults to larger ones W'”ena(characteristic earthquakesimilar to that seen in equi-
clearly affect the scaling distributions to some degree. Weibrium systems

plan to address this fundamental problem in future work.

hered is the dimension of spaceal& 2 for a planar fault
oreover, one expectf48,71 that nucleation will occur
near the Becker-Ding limit

KC(KLVtSt)3/2*d/4MB*1, (72)

where the constant of proportionality is in the range of 2—4.

IX. SUMMARY AND REMARKS
ON STATE-VARIABLE FRICTION
Under the conditions described in Eq85—(37), it is AND NEURAL MODELS
straightforward to show that there exists an associated
Fokker-Planck equation describing the time variation of theh
probability densityf[ ¢] on the slip deficit variable§70].

The stationary solution of this equation is

VIIl. FOKKER-PLANCK EQUATION AND NUCLEATION

We have discussed a number of models for friction, and
ave shown that the statistical mechanics of these models is
amenable to analysis using standard techniques. We have
also shown that CA models can be treated as equilibrium

f[p]=2"* exp{— BU[ &1}, (700  models in the mean-field regime, which constitute the space

of the models of interest for real elastic systems. These

U[ ¢] thus plays the role of an equilibrium “free energy mean-field models can be described by a spatially and tem-
functional,” the normalization constart plays the role of porally coarse grained energy functional that leads to an Ito

the partition function of equilibrium statistical mechanics, Langevin equation. We also described a model recently in-
and the noise correlation amplitugke plays the role of an troduced elsewheire 1], the TDW model, and showed that a
inverse temperature. Lyapunov potential energy functional could be defined that
As a result, for givem\ > 1, the lifetime in the metastable plays the role of an equilibrium free energy functional. As-
stateI",, can be obtained by reading off the results fromsociated probability distributions, scaling exponents, and
Refs.[48,71] predictions that compare favorably with data were also intro-
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50 —= mental Fourier component of the slip defieit the separa-
® — K=0.2, A=2.0, ek=5.6,7=0.01
~~~~~~~ eliminating areas above 5000

tion between the sliding surfacp$6], as well as other mean-
ings (see the bibliography in Ref14]). In order for insta-
bilities to occur,A—B>0. It should be noted that in the
experiments leading to Eg&.3) and(74), the stiffness of the
laboratory apparatus is arranged in such a way that it is very
large compared to the stiffness of the sliding sample. In that
case, and by virtue of the quasistatic nature of the sliding
experiments, it is usually assumed tliht V=ds/dt, where
s is the average slip of the sliding surfa¢g) that a steady
state regime is eventually achieved, @Biithat o= o®.

By a suitable redefinition of state variable, Eg3) can be
put into the suggestive form

iy
=)

hed
n

N
[

Log; (Cumulative Number)
(] w
=3 =3

-1.0 0.5 0.0 0.5 1.0 1.5 20 f_ f —
Magnitude of Simulated Events o'=0p+A0' =0° (79

FIG. 8. Gutenberg-Richter plot of cumulative number of simu-Whereas Eq(74) can be reduced to
lated events plotted against event magnitude. Filled circles include de’

eventsA>5000, open squares do not. D
dt

d—:/ [6"+In(VIV)L BA], (76)

duced, derived, and discussed. where

One of the questions that has been raised by a variety of 0" =In[(VIV,) $¥A]. 77
authors[17-19,27 is whether simple stick-slip friction, as ¢
used in the CA models discussed in this paper, is a valid Now we show that the TDW model can be put into a form
physical mechanism for describing frictional sliding. Many similar to Eqs.(76) and (77). Expanding Eq(25) about the

of these authors in fact advocate a S|ip'Weakening frictior}nean_fie|d regime' in the presence of appropriate CUtOﬁS,
law, such as the TDW model, or a velocity weakening law,yie|ds the expression

such as those discussed in Rdf3,18] and [19] (see, for

example, Eqs(75) and (76) below). However, recent work of=0g— K dp(t). (78)

by Schmittbuhl, Vilotte, and Roul72] indicates that a large

class of velocity weakening friction laws iterate to the clas-Similarly, using the linearized evolution equation f@(t)

sical stick-slip friction law under a renormalization group corresponding to Eq:38), we obtain the equation

rescaling transformation. This result clearly indicates that if a dg

model is sufficiently coarse grained spatially, the stick-slip 0_ 2

law should be physically justified. Tt - (Ket2yelgot Vi —h. (79
Two final remarks are in order. In the following, a com-

parison is provided between our model and another comi y. andh are assumed to depend on the sliding velocity

monly used friction model, as well as some comments on th¥/, there is a similarity between Eq&5) and (78), and be-

possible applicability of traveling density wave models totween Eqs(79) and(76), if ¢q(t) is identified with the state

integrate-and-fire neural models. variable 6'(t). There is one major difference, however, in
State-variable friction As mentioned briefly in the Intro- that Eq.(79) predicts a nontrivial dependence on the far field

duction, another model that is frequently used to understandisplacement;, = Vt, whereas Eq(76) does not. It is inter-

sliding friction is the phenomenological rate and state-esting that recent laboratory experimef26,21] actually in-

variable law. This friction law has been developed by the uselicate a dependence of friction af,, as a result of the

of laboratory experiments generally limited to clean, dustinevitable processes of wear that irreversibly deform and al-

free, smooth rock samples. In this lumped-parameter modeter the sliding surfaces as slip progresses.

the spatially averaged friction force’ on a sliding labora- Neural models An important property of integrate-and-

tory block is represented by the equations fire neural models is that they possess a periodic limit cycle

attractor[5,73,74. It should be noted that periodic behavior

is sometimes approximately observed in real earthquakes as

f_ f
o' =ootAIn(VIVo) +9, 73 well, such as at Parkfield, Californig9]. Under the Ife
Langevin dynamicg32), the Lyapunov functional[ ¢(t) ]

doe -V will undergo a “downhill march” on its energy landscape in
T d—c[9+ B In(VIVy)], (74 the zero noise limit. This property &[ ¢(t)] is obvious in

light of the definition of the dynamic&34) and(35). More-
over, becauséJ is bounded from below, it can be shown
Whereog, A, B, V,, andd, are constants to be determined [5,73] that U[ ¢(t+P)]<U[¢(t)], and the system ap-
from data. The quantityy(t) is a “state variable,” whose proaches a periodic limit cycle. This will also be true for
physical meaning has been variously postulated to be “assystems with quenched disorder. Systems with these proper-
perity contact time”[17], the amplitudg25] of the funda- ties can be used to model integrate-and-fire neurons
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